
Latency Analysis of an Aerial Video
Tracking System Using Fiacre and Tina

Bernard Berthomieu∗†, Silvano Dal Zilio∗†, Didier Le Botlan∗‡
∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

†Univ de Toulouse, LAAS, F-31400 Toulouse, France
‡Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

Abstract—We describe our experience with modeling a video
tracking system used to detect and follow moving targets from
an airplane. We provide a formal model that takes into account
the real-time properties of the system and use it to compute the
worst and best-case end to end latency. We also compute a lower
bound on the delay between the loss of two frames.

Our approach is based on the model-checking tool Tina, that
provides state-space generation and model-checking algorithms
for an extension of Time Petri Nets with data and priorities.
We propose several models divided in two main categories: first
Time Petri Net models, which are used to study the behavior
of the system in the most basic way; then models based on the
Fiacre specification language, where we take benefit of richer data
structures to directly model the buffering of video information
and the use of an unbounded number of frame identifiers.

I. INTRODUCTION

We describe our experience with modeling a video tracking
system used on board an aircraft to detect and follow moving
targets on the ground. This industrial case study has been
submitted as a verification challenge during the 6th Interna-
tional Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems. We propose an answer
to the first challenge of this use case [1]. Our solution is
based on the use of a model-checking tool for an extension
of Time Petri Nets with data and priorities. The models used
in this study are available online at http://www.laas.fr/fiacre/
examples/videotracking.html.

The purpose of the video tracking system is to detect
objects of interest inside a stream of images coming from
a video camera (such as a moving vehicle for example); to
estimate their future position; and to control the camera in
order to track these objects over long periods of time. This
system includes two high-level tasks: (1) a video processing
system that process camera frames in order to embed tracking
information and, ultimately, to display them on a monitor ;
and (2) a tracking and control system that performs the motion
prediction tasks and control the orientation of the camera based
on the aircraft sensors data (position, direction and speed, etc..)

We focus on the real-time properties of the video frame
processing system (the first challenge) and do not consider
the scheduling issues raised by the interaction between the
two high-level tasks. The video frame processing system is
essentially a graphics pipeline, with four processing stages
working concurrently but connected in series. The first stage
of this pipeline is to fetch a new image frame from the camera;
while the final stage consists in sending the processed frames
to the display.

The main goal of the challenge is to compute the latency
of the system, that is the best and worst-case delay from start
(reception of a new frame) to finish (output to the display).
Several factors complicate the problem. First, each step of this
pipeline have different—and sometimes varying—computing
times and are scheduled with different periods. Therefore some
amount of buffer storage is needed and the occurrence time
of the frames arrival at each stage of the pipeline cannot
be defined with an analytical formula. Next, there is a small
amount of uncertainty on the periods of the tasks. Whereas
the stages in the pipeline are in sync when the periods
are exactly those given in the specification, even a small
divergence (accumulated over several periods) can lead to an
arbitrary offset between tasks. We show that, in this case, video
frames can be lost. More precisely, some frames will never
reach the last stage of the pipeline because they will never
be written in the display buffer; frames are discarded when
the buffer is full. Finally, even though there is only a finite
number of different frames in the processing pipeline at any
given moment, the system deals with a potentially unbounded
number of frame identifiers. In our approach, we use different
modeling techniques to abstract away this unbounded number
of identifiers. As a consequence, we can solve our problems
using model-checking techniques developed for finite-state
systems.

Our approach is based on the model-checking tool Tina [2],
that provides state-space generation and model-checking al-
gorithms for an extension of Time Petri Nets with data and
priorities. We propose several models following two levels of
accuracy. First, we use Time Petri Net (TPN) in order to study
the behavior of the system in the most basic way. In this case,
we restrict ourselves to the case where the buffer is of size one.
Second, we use the Fiacre specification language [3], where
we take benefit of richer datatypes to model different sizes of
buffers and an unbounded number of frame identifiers more
simply. Both the extended TPN and the Fiacre models can be
used for analysis by Tina.

II. DESCRIPTION OF THE FRAME PROCESSING SYSTEM

We start by describing the architecture of the Frame
Processing System pipeline (FPS) using a simple diagram,
see Fig. 1 (above). The diagram outlines the intermediate data
values (the “channel” v2, a register and a buffer) that are used
as storage between each stage. The system is composed of four
different functions that are each mapped to a unique task, T1
to T4, and executed on separate hardware:

Task T1 is in charge of pre-processing the video frames

v1 bu�er

P1= 40 ± 0, 01%
BCET1= 28
WCET1= 28

T1

v2

SPORADIC

BCET2= 17
WCET2= 19

T2

register

P3= 40/3 ± 0, 05%
BCET3= 8
WCET3= 8

T3

P4= 40 ± 0, 01%
BCET4= 1
WCET4= 10

T4

[84,84]

T1

v2

register

[0,0]

DISCARD

[0,0]

WRITE

bfull

bempty [0,0]

EMPTY

s4

s1

[51,57]

T2

[51,57]

T2

[0,0]

R0

s3

[0,0]

RR

[0,0]

DISPLAY
[24,24]

T3

[117,123]

SCHEDT1frameid

v4

v3[39,41]

SCHEDT3

[30,30]

T4

[117,123]

SCHEDT4

T1 T2 T3 T4

Figure 1: The Video Frame Processing Pipeline: schematic view (above) and initial TPN model (below)

coming from the camera. Each frame is assigned a unique
identifier, that we call an id in the rest of the paper. New frames
arrive strictly periodically with a period P1 that is a (constant)
value in the range 40 ± 4.10−3. Once a new id arrives, T1
outputs a preprocessed frame, with the same identifier, after
28 ms. To compute the latency, we can abstract away the role
of the camera and simply consider that T1 is a periodic task
of period P1. Also, we do not need to model the actual image
payload; we can simply consider that ids are the only data
exchanged between tasks.

T2 is a sporadic task, triggered by the arrival of a frame at its
input (v2 in our diagram). The execution time of T2 may vary
but is always in the interval [17, 19]. The task overwrites its
output register content when it is finished. The specification
does not fix the initial values of the intermediate data values.
We consider that v2, the register and the buffer are all initially
empty. To this end, we will sometimes use a “dummy” id
(denoted NIL) to distinguish the initial value.

T3 is a periodic task, with a period P3 in the range 40/3 ±
2/3.10−2. When scheduled, T3 fetches an id in the register
and outputs its result in a buffer after 8 ms; the result is not
written—it is simply discarded—when the buffer is full. (We
assume that T3 does not execute when the register is empty.)
Since P1 is roughly three times bigger than P3, task T3 will
often process the same register value more than once.

Task T4 is periodic, with a period P4 that is in the same
range than P1. When T4 is scheduled, and if the buffer is not
empty, the last id is dequeued. In this case, the task takes 10 ms
to compute its output for the display. Due to uncertainties
on the hardware clocks, the periods of T1 and T4 may be
slightly different but cannot deviate by more than 0, 02%. This
very small difference between the timing constraints of the
system is typically a source of combinatorial explosion when
model-checking. Indeed, this means that we need roughly
10 000 periods before coming back to a “previously explored”
configuration of the system. For this reason, we will use the
amount of errors on the periods as a parameter of the system

and study its influence on the complexity of our approach.

Since our state-space generation algorithms are based
on dense-time techniques, our approach is insensitive to the
choice of a scaling factor. Therefore, multiplying the timing
constants by a fixed amount does not change the results or
the performance of our tools. In all our experiments, we will
mainly use three sets of timing constraints summarized in
the following table. The last row gives the scaling factor (we
choose the same values for T1 and T4): SPEC are the values
obtained from the specification; WIDE are values obtained
with an error in the order of 1%; EXACT are values without
errors.

T1 = T4 T3 scale / error
SPEC [119 988, 120 012] [39 980, 40 020] 3 000 / 0.01%
WIDE [117, 123] [39, 41] 3 / 2–3%
EXACT [120, 120] [40, 40] 3 / 0%

III. A SIMPLE TIME PETRI NET INTERPRETATION

We provide a first set of solutions to the challenge based
on Time Petri Nets (TPN). For reasons of brevity, we assume
a basic knowledge of the semantics of Petri Nets and we refer
the reader to e.g. [4] for an introduction to semantics of TPN.

Time Petri Nets share the same graphical representation
than standard Petri Net. In addition, a transition t can be
decorated with a time interval, I(t). Informally: a transition
t is enabled if there is enough tokens in the places connected
to it; time can elapse, at the same rate, on all the transitions
that are continuously enabled; finally, t can fire if it has been
enabled for a time θ such that θ ∈ I(t). In particular, transitions
associated to the interval [0, 0] should be fired immediately.

A. Description of the TPN model

We give a very simple interpretation of the frame process-
ing system in Fig. 1. This net uses the WIDE set of timing
constraints, therefore all timing constraints are multiplied by

a factor of 3. The model was generated using the tool nd,
which is an editor and simulator for TPN that is part of Tina
(see the file initial-wide.ndr in our source files). For
documentation, we have superimposed dashed boxes to the
model in Fig. 1 in order to stress which parts of the TPN is
related to which task.

Our modeling choices are quite simple. Actually, our main
goal is to provide an interpretation that is as close as possible
to the specification; we avoid possible optimizations in order
improve readability of the model. We have two transition
labels, SCHEDTi and Ti, for every periodic task Ti (with i
in {1, 3, 4}). Transition SCHEDTi is used to start (schedule)
the task periodically. When fired, it places a token in the place
si that will stay for the duration of the task execution. The role
of Ti is to model the end of the execution and the associated
side-effect. For instance, transition T3 models the insertion in
the buffer and T4 models sending the final frame to the display.

The one-place buffer between T3 and T4 is modeled using
two places, where a token indicates the current state; empty or
full. When T3 fires, and if the buffer is empty, then it becomes
full after a zero delay (transition WRITE); otherwise the “write”
is discarded. Task T3, the most complex component of our
model, has two additional transitions, R0 and RR, that model
reading from the register when it is either empty or full. In
this case, we use inhibitor arcs (displayed with a —◦ arc)
that block a transition when a token is present. We also use
read arcs (—•) that can test the presence of a token without
disturbing the enabled transitions.

The initial marking of the net states that every periodic
task are scheduled at time 0 and that the buffer and register
are empty.

B. Behavioral Verification with Tina

Tina [2], the TIme Petri Net Analyzer, provides a software
environment to edit and analyze Time Petri Nets and their
extensions. The core of the Tina toolset is an exploration
engine, called tina, used to generate state space abstractions
that can be later exploited by dedicated model checking and
transition system analyzer tools. (Most of the components in
Tina are command line tools and are available on the most
common operating systems.) In our experiments, we use the
tool sift instead of tina. Sift is a specialized version
of tina that supports on the fly verification of reachability
properties. It offers less options than tina but is typically
faster and requires considerably less space when dealing with
large models.

State space abstractions are vital when dealing with timed
systems, such as TPN, that have in general infinite state spaces
(because we work with a dense time model). Tina offers
several abstract state space constructions that preserve specific
classes of properties like absence of deadlocks, reachability of
markings, linear time temporal properties, or bisimilarity. In
the case of the FPS, most of the requirements can be reduced
to safety properties, that is, checking that some “bad state”
cannot occur. In this case, we do not need to generate the
whole state class graph of the system and we can use “more
aggressive” abstractions.

Tina implements two main state-space abstraction methods,
a default method that preserves the set of states and traces of

the system, and a method that preserves the states but over-
approximate the set of traces. This second method can be used
in Tina with the command line options -M; it is often much
more efficient than the default exploration mode

To give a rough idea of the complexity of our initial model,
it is possible to generate its exact state class graph and, for
example, to check that the net is 1-safe (that the number of
tokens in each place is always at most 1). This is done using
the flag -b in Tina. The property is true and can be checked
in less than 10 s on a modern laptop with 4GB of RAM.
The same property can be checked almost instantaneously (≤
0.01s) with the option -M. With the SPEC timing constraints,
the same computation with option -M takes 28.8 s and use a
peak memory of 110.7 MB.

We can already make a few “sanity checks” using our
model. For instance, since the model is 1-safe, we prove that
a task cannot receive a new id while it is still executing;
otherwise one of the place si would hold more than one token.
We can also use this model to check the impact of the initial
conditions on the behavior of the system. For instance, if the
pipeline starts with a frame in the register (there is a token in
place register initially) then we can prove that the buffer cannot
be empty when T4 is scheduled; that is the transition EMPTY is
never enabled. As a consequence, except for a first few periods
at the start of the system, we know that the execution of T4
will always takes 10 ms.

On the other hand, we cannot use the model in Fig. 1 to
compute the latency or to check that frames can be lost. The
main reason is that we cannot distinguish two different id by
looking at the marking (every id is represented as a token).
We can easily change the model to consider a finite number
of id by creating copies of each place (one copy for every
possible value of id). We give an example of the TPN with two
different id in Fig. 2: a token in place p3 (resp. p2) means that
we generate a frame with id 1 (resp. 0). The net has an extra
transition, t25, that can fire at most ∆ = 234 after a frame
with id 0 is generated. At the other end of the pipeline, this
frame is send to the display if transition t19 fires. Therefore,
to test if the best-case latency is less than ∆, it is enough to
prove that we cannot fire t19 while there is still a token in
place p18. This is a reachability property that can be checked
in Tina with the option -f. The following command executes
in 0.4 s on the model with the WIDE timing constraints (and
in 101.6 s without option -M):

sift -M -f "t19 => -p18" initial-wide.ndr

Another problem is to model a buffer with n places. It is
possible to encode this data structure using a TPN but it can
quickly become awkward when the value of n grows big. Also,
we would like to compute the minimal number of different id
necessary to check our properties. For this reason we propose
a high-level model of the Frame Processing System using the
Fiacre specification language.

IV. AN INTERPRETATION USING FIACRE

Fiacre is a specification language designed to represent
both the behavioral and real-time aspects of systems (http:
//www.laas.fr/fiacre/). The language comes equipped with a set
of dedicated tools, such as frac, a compiler from Fiacre to a

p2

t2

[84,84]

T1

p3

t3

[84,84]

T1

p5

p4

p1

p6

p7

t7

[39,41]

SCHEDT3

p8

t9

[0,0]

t8

[0,0]

p10

p9

t11

[24,24]

T3

t12

[24,24]

T3

p11

p12 p15

BUF1

t13

[0,0]

t14

[0,0]

t15

[0,0]

t16

[0,0]

t17

[0,0]

t18

[0,0]

p13

BUF0

p14

EMPTY

p16

t21

[117,123]

SCHEDT4

t19

[0,0]

DISPLAY0

t1

[117,123]

t0

[117,123]

t23

[117,123] p17

p18

SCHEDT1 SCHEDT1

SCHEDT1

t24

[51,57]

T2

t5

[51,57]

T2

t4

[51,57]

T2

t20

[0,0]

DISPLAY1

t25

[0,234]

DEADLINE

Figure 2: A TPN model for computing the best-case latency (using two frame identifiers)

format handled by Tina. In a nutshell, a Fiacre specification is
compiled into an extension of TPN where transitions can test
and modify a set of data variables. Therefore Fiacre provides
a high-level, compositional syntax for defining TPN. A formal
definition of the language is given in [5].

Fiacre programs are stratified in two main notions: pro-
cesses, which is basically a notation for states machines, and
components, which describe a system as a composition of
process instances. Components can also be nested.

The language supports two of the most common coor-
dination paradigms—communication through shared variable
(shared-memory) and synchronization through synchronous
communication ports (message-passing)—and allows to define
timing constraints on the transition of a system. We give
an example of process declarations in Fig. 3. This code
corresponds to the tasks T3 and T4 of the FPS (we still use
the WIDE timing constraints). We follow the same philosophy
in our Fiacre specification than with our TPN solution; we
provide a model that is as close as possible to the specification
and we favor readability over optimization of the model.

A. Description of the Fiacre model

The whole system is defined in the component C (see
Fig. 3), where we state that the system is the parallel com-
position of five different process instances, camera to T4.
Components are the unit for process instantiation and for
declaring ports and shared variables. The declaration of C states
that the buffer is initially empty and that all the other variables
are set to the id NIL.

Fiacre is strongly typed, meaning that type annotations
are exploited in order to guarantee the absence of unchecked
run-time errors. The language offers a large choice of data
structures, such as natural numbers, arrays, records, . . . Type
declarations for our model are listed in Fig. 4. The register is
a variable holding values of type id. A value of type id can
be of three kind: the constant NIL; a “common” frame with
index i, denoted FRAME(i); a special constant, MAGIC, that is

the frame id that we monitor when computing the latency. The
buffer, of type mbuff, is a fifo queue of length CAPACITY
that can hold values of type id. The fifo queue is a primitive
type in Fiacre, but the insertion policy of the buffer in the
FPS is not standard: the id is discarded when the buffer is
full; otherwise we add a frame id only if it is not already
present in the queue. To model this behavior, we define a
dedicated insertion function in Fiacre (see the declaration of
insertbuff in Fig. 4).

A Fiacre process is defined by a set of parameters and
control states, each associated with a set of complex transitions
(introduced by the keyword from). Complex transitions are
expressions that declare which transitions may fire and how
variables are updated. Expressions are built from classical
programming languages constructs (assignments, conditionals,
pattern-matching, . . .); non-deterministic constructs (such as
external choice); jump to a state (to); etc. As an example, we
describe the behavior of process T3. (The other processes are
roughly similar.) Process T3 can access two shared variables,
register and buffer. One can remark that the parameters of
each process are exactly those defined in our schematic view
of Fig. 1. When T3 has been in the state get for a duration in
[15, 17], it copies the value of the register in a local variable,
v3, and move to the state set. After waiting another 24, it
then tries to insert the value of v3 in the buffer and move
back to get. This models the behavior of a periodical task,
with period 40 and jitter 1, that writes its into the buffer with
a delay of 24.

B. Latency Analysis of the Fiacre Model

Figure 5 gives the code for process camera, that is in
charge of generating new frames. This process writes period-
ically a new id in the variable v1; it will write only once,
non-deterministically, the special value MAGIC then go to state
stop. In camera, we use the user-defined function nextid
to compute, and reuse, the first frame identifier that does not
occur in the system. In this way, we can prove that we need

process T3 (®ister: id, &buffer : mbuff) is
states set, get

var v3 : id := NIL

from set
wait [24,24];
buffer := insertbuff (buffer, v3)
to get

from get
wait [15,17];
v3 := register;
to set

//--

process T4 (&buffer : mbuff) is
states set, get, displayed

from set
wait [0, 0];
if (empty buffer) then

to get
else

case first(buffer) of
MAGIC → to displayed

| any → buffer := dequeue buffer; to get
end

end

from get
wait [117, 123];
to set

//--

component C is
var v1 : id := NIL, v2 : id := NIL,

register : id := NIL,
buffer : mbuff := {||}

par
camera (&v1)

|| T1 (&v1, &v2)
|| T2 (&v2, ®ister)
|| T3 (®ister, &buffer)
|| T4 (&buffer)
end

Figure 3: Excerpt from our Fiacre solution

only a finite number of values of the form FRAME(i) without
bounding a priori the value of i.

On the other end of the pipeline, values of type id are
consumed by T4 (see Fig. 3). Process T4 will move to the
state displayed as soon as it spots the special id MAGIC. We
can use this state to compute the end-to-end latency of a frame;
we only need to check the time between the creation of our
special frame (when v1 equals MAGIC) to its eventual display
(when T4 enters state displayed). In practice, this can be
done by adding an “observer” process to the component C
that monitors the time between these two events.

We give an example of observer in Fig. 5. Process
observer enters the state deadline as soon as the guard
(v1 = MAGIC) is true. The process cannot stay in this state
for more than ∆ = 234. As a consequence, the “latency” of
the frame MAGIC is bigger than ∆ if and only if we can reach a
state such that T1 is in the state displayed while observer
is not yet in state stop. We can express this property directly
in the Fiacre code using a property declaration; we give
two examples of property in Fig. 5. Therefore, to compute the

const CAPACITY : nat is 3

type id is union
NIL

| FRAME of nat
| MAGIC
end

type mbuff is queue CAPACITY of id

function insertbuff (q: mbuff, f: id) : mbuff is
var tmp: mbuff := q
begin

if (full q) then
return q

end;
while not (empty tmp) do

if (f = first tmp) then
return q

end;
tmp := dequeue tmp

end;
return enqueue(q, f)

end

Figure 4: Types, constants and functions

best-case latency, we need to check the property minlatency
for several values of ∆ and select the “first value” such
that the property is false. A similar approach can be used to
compute the worst-case latency and the minimal time between
the generation of two lost frames. We give the results of our
analysis in the next section.

The second property in Fig. 5, max, can be used to check
that it is not necessary to consider more than 5 different id
when the buffer is of size 3; i.e. the variable v1 is always
different from FRAME(5).

V. EXPERIMENTAL RESULTS

The models used in our experiments are available online at:
http://www.laas.fr/fiacre/examples/videotracking.html. Most of
the models were developed in the course of one week, but
we were able to have our first TPN model in about one
hour. The TPN and Fiacre models where done concurrently
by two different people (we obtain the same values with the
two approaches). This development speed can be explained
by the fact that we can easily model-check our examples; a
modification to the model can be tested in a few seconds. Also,
the size of the models are quite reasonable and therefore it was
possible to use our simulators to understand the behavior of
the system and to analyze the counter-examples returned by
the model-checker.

Most of the time was spent refactoring our models in order
to simplify their presentation for this paper. We also spent some
time analyzing examples of “execution traces” to understand
which scenarios led to the loss of a frame or to the best-case
latency. For instance, we found that the scenarios for the worst-
case latency is almost the same than for a frame loss, which
is not surprising as an afterthought; the “slowest” frame is the
one that was almost lost. We give the values computed in our
experiments using the different timing constraints (the result
are converted into ms) for two possible sizes of the buffer,
n = 1 and n = 3. Column BTW gives the minimal time
between two lost frames; it is easy to understand that BTW is
necessarily a multiple of the period P1.

process camera (&v1: id, ...) is
states send, stop

from send
wait [117,123];
select

v1 := FRAME(nextid(v1, ...));
to send

[] v1 := MAGIC;
to stop

end

from stop
wait [117,123];
v1 := FRAME(nextid(v1, ...));
to stop

process observer(&v1 : frameid) is
states start, deadline, stop

from start
wait [0,0];
on (v1 = MAGIC);
to deadline

from deadline
wait [0,234]; // Delta = 234
to stop

//--

function isFrame (u : id, F : nat) : bool is
begin

case u of
FRAME(F)→ return true

| any→ return false
end

end

//--

property minlatency is ltl [] ((C/5/state displayed)
⇒ (C/6/state stop))

property max is ltl [] not (C/1/value isFrame(v1,5))

Figure 5: The camera process with Fiacre properties

Our models are not totally faithful to the specification. In
particular, we use an interval to model the uncertainty on the
period. This means that, inside the same execution trace, the
periods of a task may vary. (It would be possible to have “an
exact” model using an extension of TPN with stopwatches, but
this is much more costly in terms of performances.) As a result,
we obtain an over-approximation of the possible behaviors: this
gives a lower-bound when computing the minimal latency and
an upper-bound for the maximal latency. The same observation
is true when we over-approximate the possible error on the
periods; results obtained in the case WIDE will give lower
and upper-bound for the case SPEC (which bounds the optimal
values).

Another possibility is to compute the latencies by iterating
over a sample of values for P1, P3 and P4. If we denote by
MINFIX and MAXFIX the best latencies value obtained on a
sample of periods values and by MIN and MAX the exact best
and worst-cases we have the following relations. (The relations
for BTW are the same than for MIN.)

MINWIDE ≤ MINSPEC≤ MIN ≤ MINFIX ≤ MINEXACT

MAXEXACT≤ MAXFIX ≤ MAX ≤ MAXSPEC≤ MAXWIDE

n = 1 MIN MAX BTW
EXACT 130 ms 130 ms n.a. (no loss)
WIDE 88 ms 147 ms 78 ms (2 periods)
SPEC 89.65 ms 145 ms 79.99 ms (2 periods)
FIX 90 ms 144 ms 79.99 ms (2 periods)

n = 3 MIN MAX BTW
EXACT 130 ms 130 ms n.a. (no loss)
WIDE 88 ms 229 ms 429 ms (11 periods)
SPEC 89.65 ms 225 ms > 1.4 s (35 periods)
FIX 90 ms 223.33 ms < 163 s (4085 periods)

Our experiments show that there is no loss of frames when
the periods P1 and P4 are equal (even if P3 is not exact). We
also observe that increasing the size of the buffer does not
reduce the best-case latency but can aggravate the worst-case.

We have not been able to compute the value of BTW for
the 3-place buffer in the case SPEC (we stop computations that
takes more than an hour). We can provide a lower-bound for
BTW, obtained using finer intervals than with WIDE. Based on
the observations made during the computation for the FIX case,
we believe that the “exact value” of BTW could be much bigger
than this bound (it appears that BTW is inversely proportional
to the difference between periods, |P1−P4|). Our best upper-
bound for BTW was obtained using an optimized model; we find
a bound of approx. 4 000 periods for FIX using the values P1
= 39.996 ms, P3 = 13.333 ms and P4 = 40.004 ms. This is the
only question in the challenge for which we need to use a
“more clever approach” than the simple, straight solution that
was enough up to now. Nonetheless, more work is still needed
in order to obtain a satisfactory value for BTW.

VI. CONCLUSION

We have used a real-time model-checker to compute the
maximal (worst-case) and minimal (best-case) end to end
latency of the Frame Processing System, as well as to find
a lower bound on the delay between the loss of two frames.
Therefore, instead of using model-checking for validation, as
is usual, we use it as a tool for architecture exploration.

This case study is interesting for several reasons. First, it
is well-suited for component-based modeling languages (since
the description is highly modular) and it is a good example
for real-time verification methods (since the specification has
plenty of timing constraints). Also, this case study provides a
good motivation for the use of high-level data structures in a
specification language. In our Fiacre models, for instance, we
use a queue of identifiers with a dedicated insertion function
to elegantly model the buffer’s behavior.

Finally, our experiments show that the very low level
of inaccuracy on the periods—typically a hundredth of a
percent in the specification—is a major source of combinatorial
explosion. (We are in a case where bigger errors leads to
better performances). In this context, we show that we can use
dedicated state space abstraction techniques (in this case the
option -M of Tina) in order to solve problems where the most
general approach fail to scale up. This stress the importance to
provide a full verification toolbox that gives access to a range
of optimizations and modeling help.

REFERENCES

[1] R. Henia and L. Rioux, “The 2015 fmtv challenge,” 2015, see https:
//waters2015.inria.fr/files/2014/11/FMTV-2015-Challenge.pdf.

[2] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool Tina – con-
struction of abstract state spaces for Petri Nets and time petri nets,”
International Journal of Production Research, vol. 42, no. 14, 2004.

[3] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gauf-
filet, F. Lang, and F. Vernadat, “Fiacre: an intermediate language for
model verification in the topcased environment,” in Embedded Real Time
Software (ERTS), 2008.

[4] B. Berthomieu and F. Vernadat, State Space Abstractions for Time Petri
Nets. Handbook of Real-Time and Embedded Systems, Ed. Insup Lee,
Joseph Y-T. Leung and Sang Son, CRC Press, Boca Raton, FL., U.S.A.,
2007.

[5] B. Berthomieu, J.-P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres,
R. Saad, J. Stoecker, and F. Vernadat, “The syntax and semantics of
fiacre,” Repport LAAS N 07264, 2007.

