
Calculating Latencies in an Engine Management

System Using Response Time Analysis with MAST

Juan M. Rivas, J. Javier Gutiérrez, Julio L. Medina and Michael González Harbour

Software Engineering and Real-Time Group, University of Cantabria, Spain.

{rivasjm, gutierjj, medinajl, mgh}@unican.es

Abstract—This paper reports solutions to the 2016 edition of

the Formal Methods and Timing Verification (FMTV) challenge.

The challenge requests calculating latencies in a complex engine

management system, of which an Amalthea model is provided. We

propose solving the challenge using MAST, which is a real-time

systems model and also a suite of tools for schedulability analysis

and optimization. The efforts to solve the challenge are mainly

focused on translating the Amalthea model into the MAST model.

Then, response time schedulability analysis tools are used. We

discuss the strengths and limitations of our approach, and present

the results obtained. Finally, we report the time needed to

understand and complete the challenge. The solutions are

available to the public in electronic form to facilitate their

assessment by the community.

Keywords— Amalthea; MAST; engine management system;

real-time, response-time analysis.

I. INTRODUCTION

This paper presents a solution to the 2016 FMTV Challenge
[1] which asked calculating tight end-to-end latency bounds in a
complex engine management software composed of a number
of cause-effect chains. The system is provided as an Amalthea
[2] model.

We propose the verification of this system by applying
response time analysis (RTA) inside the MAST [3][4] analysis
suite. Accordingly, the first effort that must be undertaken is to
define an Amalthea to MAST model transformation path. Once
an equivalent MAST model is generated, the MAST analysis
tool can be used to calculate latencies, using common response-
time analysis techniques, such as the offset-based analysis [5].
Using MAST enables the application of complex mathematical
formulation to perform the response time analysis on an easy to
understand high level abstraction model. This approach requires:
(1) the correct interpretation and transformation of the provided
model, (2) the selection of the most appropriate and less
pessimistic analysis technique, and (3) the correct interpretation
of the results provided by the tools.

The paper is organized as follows. Section II describes the
MAST environment focusing on the most relevant elements
used to solve the challenge. Section III deals with the
interpretation of the provided Amalthea model, and how it is
modelled using MAST. Section IV proposes an analysis for

event chains. In Section V, the challenge results are presented.
Finally, Section VI presents the conclusions of this work.

II. MAST TOOL SUITE

The MAST environment provides an open source set of tools
to perform schedulability analysis and optimization of real-time
systems [4]. These tools operate on systems described using the
MAST model [3], which is key to our solution of the challenge.
This model is aligned with MARTE (Modeling and Analysis of
Real-Time Embedded systems) [6], a standard of the Object
Management Group (OMG) for modeling and analysis of real-
time and embedded systems.

A. The MAST model

The MAST model follows an event driven approach, and
assumes a real‐time distributed system with multiple processing
resources (CPUs and communication networks). The system is
composed of distributed end‐to‐end flows, which are released by
periodic, sporadic or aperiodic sequences of external events. The
relative phasing of the activations of different end-to-end flows
is assumed to be arbitrary. An end-to-end flow is composed of a
sequence of steps, which represent the execution of a thread in a
processor, or the transmission of a message through a network.
Each release of an end‐to‐end flow causes the execution of one
instance of its sequence of steps. Each step is released when the
preceding one in its end‐to‐end flow finishes its execution. We

This work has been funded in part by the Spanish Government under grant

number TIN2014-56158-C4-2-P (M2C2).

Fig. 1. Example of a simple MAST end-to-end flow with three steps.

Thread 1

ei

Di

Ri3=Ri

 i2

ri2

Ri2

 Ti

Thread 2i

Step i1 Step i2 Step i3

assume that the steps are statically mapped to processing
resources. The model also allows mutual exclusion
synchronization in the processors.

Fig. 1 shows an example of an end-to-end flow (i) with

three steps (i1, i2, i3), each executing in a different processing
resource PRk. The end-to-end flow is released by the arrival of
the external event ei. This external event has a period Ti, which
can also represent the minimum inter-arrival time of a sporadic

arrival pattern. Steps can have an initial offset (ij) associated,
which is the minimum imposed release time of the step, relative
to the arrival of the external event. Each step has a worst-case
execution time (WCET) Cij, and a best-case execution time
(BCET) 𝐶𝑖𝑗

𝑏 .

MAST supports Fixed Priorities (FP) and Earliest Deadline
First (EDF) scheduling. The timing requirements that we
consider are end-to-end deadlines (Di), which must be met by
the completion of the last step in the end-to-end flow, relative to
the arrival of the external event. The deadlines can be larger than
the periods.

As a result of the response time analysis, each step ij has a
worst-case response time (or an upper bound of it) Rij, and a best-
case response time (or a lower bound of it) 𝑅𝑖𝑗

𝑏 . These response

times are relative to the arrival of the external event (global
response times). The worst-case response time of an end-to-end
flow (Ri) is the worst-case response time of its last step. The
system is said to be schedulable if the worst-case response times
of the end-to-end flows are lower or equal to their end-to-end
deadlines (Ri ≤ Di).

The completion time of the steps can vary for different
activations. As a consequence, the step activation time also

varies. For a step ij, we define its release jitter (Jij) as its worst-
case variation in activation times. The jitter is taken into account
by the analysis techniques.

B. MAST analysis tools

To solve the challenge, we use the response-time analysis
techniques included in MAST [4] on the equivalent MAST
model generated from the Amalthea model. MAST implements
several analysis techniques that can be applied to an FP system
with end-to-end flows, ranging from the holistic analysis, to
various offset-based techniques [4].

Of particular interest for this work is the Offset-Based
Analysis with Precedence Relationships [5]
(offset_based_approx_w_pr in MAST). This technique supports
steps with offsets, and is capable of reducing the pessimism in
the results by eliminating scenarios that would be impossible
when taking into account the precedence relationships inside
end-to-end flows. This characteristic is particularly helpful with
end-to-end flows that don’t traverse different processing
resources, as it will be the case in this challenge.

Additionally, MAST can also perform sensitivity analysis by
calculating the system slack, which, if positive, is defined as the
percentage by which the execution times of all the steps in the
system may be increased while still keeping the system
schedulable. If negative, the system slack corresponds to the
percentage by which WCET’s would have to be decreased to

make the system schedulable. Similarly, slacks for each
processor can be calculated too.

MAST provides global worst-case and best-case response
times of the steps in the system. For a part of this challenge we
will need local response times of the steps. While these are not
usually provided by MAST, we have modified the tool so it
could handle local response-times too, according to [7] taking
into account offsets. Then, we define local worst-case response
times (rij), and local best-case response times (𝑟𝑖𝑗

𝑏) as upper and

lower bounds, respectively, on the completion times of steps,
relative to their own local activations (see Fig. 1). This custom
version of MAST will be made available in addition to the
transformation and generated models.

III. AMALTHEA TO MAST MODEL TRANSFORMATION

The 2016 FMTV Challenge provides an Amalthea model of
a full blown engine management system. The complexity of the
system is made apparent just by looking at the model file, which
has approximately 71000 lines. In this section, we will describe
how we interpret the Amalthea model, and how the equivalent
MAST description of the engine management system is created.
While Amalthea defines a vast meta-model supporting many
types of elements and use-cases, we will limit our transformation
to the elements relevant for this challenge.

Amalthea tasks represent the schedulable elements in the
model. For the case of the challenge, they have the following
characteristics:

 Tasks are activated by periodic or sporadic stimuli with
minimum inter-arrival times. Stimuli are assumed to
have arbitrary phasing (property “Clock” of the stimuli is
undefined). Timing constraints are given as deadlines
that the tasks must meet. In this case, deadlines are equal
to the periods (tasks must finish before their next
activation).

 Tasks are statically assigned to a core, and are scheduled
with a fixed priority policy. Tasks can be preemptive
(they can preempt any lower priority task at any
moment), or cooperative (they can preempt lower
priority cooperative tasks only at the termination of
runnables). In the provided model, cooperative tasks
always have lower priority than preemptive tasks.

 Each Amalthea task in the model executes a sequential
list of Runnables. Each Runnable is composed of three
sequential stages: (1) label (memory) read accesses, (2)
execution of instructions in the assigned processing core,
and (3) label (memory) write accesses. Some Runnables
don’t write or read from memory.

We interpret Amalthea tasks as MAST end-to-end flows, in
which each runnable is transformed into a MAST step. For
sporadic Amalthea tasks, the resulting MAST end-to-end flow
will be periodic, with a period equal to the minimum inter-arrival
time. This interpretation is only correct for flows with offsets
within the periods [8]. Since in the Amalthea model the flow
deadlines are within the periods so are the step offsets. If the
offsets were larger than the periods, the MAST flows would
need to be sporadic and the worst-case response times would be
larger. The deadline of the Amalthea task is directly used as the

end-to-end deadline of its corresponding MAST end-to-end
flow.

MAST lacks a specialized element to model memories.
Additionally, it also doesn’t implement any mechanism to model
the blocking of a processor while it is accessing a memory, thus
disallowing us to model memory as a general purpose device.
With these limitations in mind, we will model the memory
accesses as execution times added to the MAST steps,
accounting for the worst-case and best-case costs of accessing
the memory. The worst-case cost of accessing a label
pessimistically assumes that every core is accessing that
memory at the same time. Therefore, if we consider that only the
global memory is used (second question of the challenge), the
worst-case cost of accessing a label is 4*9 cycles. Similarly, the
best-case cost of accessing a label assumes that no other core is
in the queue for that memory, so this value is just 9 cycles (no
contention).

Accordingly, in the runnable to MAST step transformation,
the worst-case execution time of the step (Cij) is calculated as the
sum of two elements: (1) the execution time of the upper bound
of the number of instructions of the runnable, and (2) the worst-
case cost of accessing the labels. If a runnable accesses N labels
(read and/or write), the worst-case cost would be N*4*9 cycles
if we assume that only global memory is used. Likewise, the
best-case execution time (𝐶𝑖𝑗

𝑏) of the step is calculated as the sum

of the lower bound of the instructions of the runnable, and the
best-case cost of accessing the labels (N*9 cycles).

Additionally, we also take into account the blocking effect
in a thread accessing the memory due to a label being accessed
by a lower priority thread in the same core, even though this is
almost negligible. This is modeled by including in each core a
shared resource protected by the Immediate Ceiling protocol that
is accessed by each step during 9 cycles. This produces one
blocking of 9 cycles to each higher priority thread, which is the
intended effect.

Fig. 2 depicts the transformation of a simple Amalthea task
(Fig. 2a) into a MAST end-to-end flow (Fig. 2b). If memory
accesses are ignored, as stated in the first question of the
challenge, the executions times of the resulting MAST steps
only include the execution times produced by the instructions.

MAST supports non-preemptive tasks, but they cannot be
preempted by any task. This is not aligned with the behavior of
Amalthea cooperative tasks, which can be preempted by
preemptive tasks. To model cooperative tasks, we will take into
account that in the worst-case scenario, these tasks will be
blocked by an amount equal to the longest cooperative runnable
with lower priority. In MAST we can induce this blocking
adding a dummy shared resource that is used by the longest
runnable of each cooperative task. MAST automatically finds
the longest possible blocking that affects each task. Fig. 3a
depicts a MAST end-to-end flow transformed from a preemptive
Amalthea task, while Fig. 3b shows the transformation of two
Amalthea cooperative tasks.

IV. ANALYSIS OF EVENT CHAINS

We interpret event-chains as a latency model for non-
consecutive runnables communicating via shared memory. The
first runnable in the event-chain writes a result in a label. Then
the next runnable in the chain reads this label, process it, and
writes its result in another label, and so on. Runnables in an
event-chain can belong to the same Amalthea task or not. Even
though MAST does not support this kind of “virtual” end-to-end
flows, it provides results that can be used to calculate bounds for
the best and worst-case latencies of the event-chains.

We distinguish two types of event-chains: event-chains that
stay in the same Amalthea task; and event-chains that traverse
different Amalthea tasks. Each kind requires a different
formulation to calculate the end-to-end latencies.

A. Event-chains that traverse different Amalthea tasks

Fig. 4 shows the MAST equivalent model of a simple event-
chain that traverses three Amalthea tasks. This is the behavior
that follows EffectChain_2 and EffectChain_3 event-chains in
the challenge. Let us use the simple example shown in Fig. 4 to

Fig. 2. (a) Example of a simple Amalthea task with three Runnables, and (b)

its MAST end-to-end flow equivalent used in this work

Instructions_1
stimuli

 [Tmin ,Tmax]

Instructions_2 Instructions_3

AMALTHEA Task

M

Labels read

M M M M M

Runnable_3Runnable_2Runnable_1

External

event

 Tmin

End-to-end deadline = D

Step 11

Labels written

(a)

(b)

C11

Worst-case

memory access cost

Step WCET as instructions +

worst-case memory accesses

Step 12 Step 13

C12 C13

Fig. 3. Equivalent Amalthea tasks as MAST end-to-end flows, for (a)

preemptive , and (b) cooperative Amalthea tasks.

MAST Thread

External

event

 T1min

Step 11 Step 12

(a)

Step 13

MAST Thread

External

event

 T2min

Step 21 Step 22

(b)

Step 23

Priority: P1

From Premptive AMALTHEA Task

From Cooperative AMALTHEA Task

Priority: P2

MAST Thread

External

event

 T3min

Step 31 Step 32

Step 33

Priority: P3

Dummy Shared Resource

From Cooperative AMALTHEA Task

Longest

Runnable

Longest

Runnable

explain how to formulate the latencies for this kind of event-
chain.

The worst-case latency of the event-chain (L) comprises the
sum of the worst-case local response times of the steps in the
chain (rij), and the periods of all the end-to-end flows but the first
one. The periods should be added because in the worst-case
situation it is assumed that at the time a label is written, the next
runnable in the chain has just executed, so the chain cannot
continue until the next period. For sporadic stimuli, the period
added must be its upper bound. Similarly, the best-case latency
(Lb) is calculated by summing the best-case local response times
(𝑟𝑖𝑗

𝑏). In this case periods are not added, because the best case is

built when a label is read immediately after the previous
runnable in the chain updated its value. The formulation for the
worst and best case latencies for the event-chain shown in Fig. 4
is formalized as follows:

𝐿 = 𝑟11 + 𝑇2 + 𝑟22 + 𝑇3 + 𝑟33

𝐿𝑏 = 𝑟11
𝑏 + 𝑟22

𝑏 + 𝑟33
𝑏

B. Event-chains that go back in the same Amalthea task

Fig. 5 shows the MAST equivalent model of a simple event-
chain that traverses the same Amalthea task backwards. This is
the behavior of EffectChain_1 in the challenge. For this kind of
event-chains it is trivial to see that to go backwards, the chain
requires an additional activation of the Amalthea task.

Using the simple example shown in Fig. 5 as reference, for
this type of event-chains the worst-case latency (L) occurs when

the first label in the chain is read as soon as possible (𝑅12
𝑏), so

the chain has to wait the maximum amount of time until the next
activation of the end-to-end flow. Then, the event-chain must

wait for the worst-case completion time of step 11 (𝑅11). Since
the end-to-end flow must finish before its next activation, the

response time of step 15 is irrelevant in this calculation. The
total worst-case latency for this type of event-chain is formalized
with the following equation:

𝐿 = (𝑇1 − 𝑅12
𝑏) + 𝑅11

Likewise, the best-case latency (Lb) of the event-chain
occurs when the first label is read as late as possible (𝑅12) and

step 11 finishes as soon as possible (𝑅11
𝑏). The best-case latency

for these kind of event-chains can be calculated with the
following formula:

𝐿𝑏 = (𝑇1 − 𝑅12) + 𝑅11
𝑏

V. EVALUATION

To transform the provided Amalthea model to MAST we
developed an ad-hoc tool written in Java, consisting on less than
400 lines of code. This tool reads the challenge model using the
Eclipse EMF framework [9], and builds an equivalent MAST
model piece by piece using the interpretations described in
Section III. The transformation of the given Amalthea model to
MAST takes approximately 10 minutes, most of which are spent
by the EMF framework loading the Amalthea model. The
generated MAST model has approximately 23000 lines.

We proceed to solve the questions raised in the challenge,
that is, to calculate end-to-end latencies that are as tight as
possible. The challenge doesn’t explicitly specify which are the
end-to-end latencies that must be calculated. We provide end-to-
end latencies for the Amalthea tasks (since they all have timing
requirements), and for the event-chains described in the model.
The analysis technique used has been the Offset-Based Analysis
with Precedence Relationships [5]. This is the less pessimistic
technique for end-to-end flows that only traverse one processor.
The analysis tool takes from 1 to 5 minutes to execute,
depending on the utilization of the system. The calculations of
the slacks took up to 2 hours, since they involve iterative
executions of the analysis tool.

In a first attempt to get analytical worst-case latencies, we
used the upper bounds of the number of instructions of the
runnables as the WCET of the MAST steps. The total utilization
of that system goes above 100%. Using response time analysis
in such situation automatically yields unbounded (infinite)
worst-case response times. While utilizations over 100% can be
handled by other techniques (e.g., simulators), they are not
appropriate when applying response time analysis. After
knowing that all upper-bounds in the original Amalthea model

Fig. 4. Interpretation of an event-chain traversing different MAST end-

to-end flows.

11 12 13

 T1

21 22 23

 T2

31 32 33

 T3

r11

Event Chain

r22

r33

Fig. 5. Interpretation of an event-chain going backwards in the same

MAST end-to-end flow.

11 12

 T1

Event Chain

13 14 15

R12

Rb
12

T - R12

T - Rb
12

R11

Rb
11

1 23

can never occur at the same time, and not having the realistic
models for each relevant real-time situation, we decided to
consider two scenarios: Scn-ACET, and Scn-WCET.

In Scn-ACET, the worst-case execution times of the steps
are calculated using the mean value of the number of instructions
of the runnables. In Scn-WCET the worst-case execution times
of the steps are calculated with the upper bound of the number
of instructions (as described in Section III). In both scenarios we
calculate latencies for different CPU clock frequencies, from the
default 200Mhz and above (233Mhz, 266Mhz, etc.), until the
timing requirements in the system are met. We essayed common
CPU frequencies only. Additionally, for each analyzed case, we
also calculate the system slack, and the slack of each core.

A. Ignoring Memory Accesses

Table I shows the results when memory accesses are ignored.
Shadowed cells indicate tasks that don’t meet their deadlines.
We can see that for Scn-ACET, 200Mhz is enough to make the
system schedulable, with a system slack of 9.77%. If the clock
frequency is increased to 233Mhz, system slack increases to
27.73%. For Scn-WCET, schedulability is achieved at 300 Mhz,
with a system slack of 8.98%. If we observe the slack in each
core, we can see that CORE1 is always the most constrained
(lowest positive slack). This is to be expected, as this core has
higher utilization among all cores.

B. Adding Memory Accesses, using Global Memory Only

We repeat the process, but this time considering the memory
accesses. As a reminder, the memory accesses are modelled as
additional WCET of the steps, considering the worst-case cost
of accessing each label. The results are shown in Table II. As
can be expected, the core utilizations now increase compared to
the case without memory accesses (Table I). The increase in
utilization is between 3% and 12%, depending on the core. As a
consequence, there is a system-wide increase in latencies too.

In this situation, Scn-ACET is not schedulable at 200 Mhz
(Angle_Sync task misses its deadline in its worst-case). In this
scenario, schedulability is achieved at 233 Mhz, with a system
slack of 13.67%. On the other hand, Scn-WCET is schedulable
at 300 Mhz, although with a marginal system slack of just
0.78%. At 333 Mhz, this system slack increases to 11.72%.

C. Re-mapping Labels

The final question of the challenge asks for an optimization
of the label-to-memory mapping to minimize the latencies.
MAST does not provide a model for mapping memories, so we
propose a reasonable solution. We identify that the majority of
the labels are only accessed from a single core. As a first step,
we map those labels into their local memories. Now the problem
is reduced to determining where to map the labels shared by
more than one core.

TABLE I. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%),
IGNORING MEMORY ACCESSES.

 Scn-ACET Scn-WCET

 200 Mhz 233 Mhz 200 Mhz 300 Mhz 333 Mhz D

CORE0 Util. (%) 71.47 61.35 97.02 64.68 58.27

CORE1 Util. (%) 88.38 75.86 133.57 89.05 80.22

CORE2 Util. (%) 71.36 61.26 106.85 71.24 64.18

CORE3 Util. (%) 77.19 66.25 117.94 78.62 70.83

System Slack (%) 9.77 27.73 -27.34 8.98 21.09

CORE0 Slack (%) 31.08 52.89 -98.44 45.12 60.52

CORE1 Slack (%) 10.29 28.46 -98.44 9.35 21.2

CORE2 Slack (%) 40.37 63.58 -98.44 40.37 55.66

CORE3 Slack (%) 29.1 50.21 -98.44 26.56 40.37

Angle_Sync 5.54 3.86 ∞ 5.59 4.58 6.66

ISR_1 0.03 0.02 ∞ 0.02 0.02 9.5

ISR_10 0.02 0.02 ∞ 0.02 0.02 0.7

ISR_11 1.45 1.23 ∞ 1.29 1.16 5

ISR_2 0.04 0.03 ∞ 0.04 0.03 9.5

ISR_3 0.06 0.05 ∞ 0.05 0.05 9.5

ISR_4 0.50 0.43 ∞ 0.46 0.41 1.5

ISR_5 0.21 0.18 ∞ 0.19 0.17 0.9

ISR_6 0.23 0.20 ∞ 0.21 0.19 1.1

ISR_7 1.21 0.86 ∞ 0.90 0.81 4.9

ISR_8 0.75 0.63 ∞ 0.66 0.59 1.7

ISR_9 2.46 1.48 ∞ 2.20 1.39 6

Task_1000ms 31.18 17.63 ∞ 31.14 18.63 1000

Task_100ms 31.01 17.48 ∞ 30.97 18.47 100

Task_10ms 7.72 6.62 ∞ 7.86 7.08 10

Task_1ms 0.52 0.45 ∞ 0.51 0.46 1

Task_200ms 31.09 17.55 ∞ 31.05 18.55 200

Task_20ms 9.55 7.95 ∞ 9.78 8.81 20

Task_2ms 0.29 0.25 ∞ 0.27 0.24 2

Task_50ms 12.77 9.91 ∞ 12.99 11.46 50

Task_5ms 0.93 0.80 ∞ 0.89 0.80 5

EffectChain_1 (L) 12.63 12.25 ∞ 12.67 12.40

EffectChain_2 (L) 25.23 23.10 ∞ 25.44 23.86

EffectChain_3 (L) 63.38 60.72 ∞ 63.85 62.44

TABLE II. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%),
INCLUDING MEMORY ACCESSES, USING GLOBAL MEMORY ONLY

 Scn-ACET Scn-WCET

 200 Mhz 233 Mhz 200 Mhz 300 Mhz 333 Mhz D

CORE0 Util. (%) 73.75 63.31 99.30 66.20 59.64

CORE1 Util. (%) 99.21 85.16 144.41 96.27 86.73

CORE2 Util. (%) 76.40 65.58 111.89 74.59 67.20

CORE3 Util. (%) 86.10 73.91 126.85 84.57 76.19

System Slack (%) -2.34 13.67 -32.81 0.78 11.72

CORE0 Slack (%) -98.44 48.47 -98.44 41.92 57.57

CORE1 Slack (%) -1.92 14.20 -98.44 1.18 12.21

CORE2 Slack (%) -98.44 52.89 -98.44 33.80 48.47

CORE3 Slack (%) -98.44 34.50 -98.44 17.87 30.41

Angle_Sync 6.95 4.85 ∞ 6.60 4.96 6.66

ISR_1 0.03 0.03 ∞ 0.03 0.02 9.5

ISR_10 0.03 0.02 ∞ 0.02 0.02 0.7

ISR_11 2.26 1.27 ∞ 1.32 1.19 5

ISR_2 0.05 0.04 ∞ 0.04 0.04 9.5

ISR_3 0.07 0.06 ∞ 0.06 0.05 9.5

ISR_4 0.52 0.45 ∞ 0.47 0.42 1.5

ISR_5 0.22 0.19 ∞ 0.20 0.18 0.9

ISR_6 0.24 0.21 ∞ 0.22 0.20 1.1

ISR_7 1.25 0.89 ∞ 1.09 0.83 4.9

ISR_8 0.78 0.65 ∞ 0.67 0.61 1.7

ISR_9 2.53 2.15 ∞ 2.27 1.44 6

Task_1000ms 33.91 19.32 ∞ 33.03 19.64 1000

Task_100ms 33.55 19.02 ∞ 32.74 19.37 100

Task_10ms 8.61 7.39 ∞ 8.45 7.62 10

Task_1ms 0.58 0.50 ∞ 0.54 0.49 1

Task_200ms 33.71 19.15 ∞ 32.87 19.49 200

Task_20ms 11.21 8.79 ∞ 11.15 9.22 20

Task_2ms 0.32 0.27 ∞ 0.29 0.26 2

Task_50ms 13.63 11.42 ∞ 13.57 11.96 50

Task_5ms 0.97 0.84 ∞ 0.92 0.83 5

EffectChain_1 (L) 12.93 12.52 ∞ 12.87 12.59

EffectChain_2 (L) 26.17 23.89 ∞ 26.07 24.67

EffectChain_3 (L) 64.20 62.20 ∞ 64.40 62.91

In our pessimistic approach for modeling the memory
accesses, even if just one label in the local memory is accessed
from a non-local core, every label in that local memory would
be impacted. For example, consider a local memory with labels
that are accessed from two cores: the local core and a non-local
core. In this case, and regardless of from which core the memory
is accessed, the worst-case cost assumes that both cores are
accessing the memory at the same time, and thus that cost for
reading or writing any of its labels would be 1 cycle + 9 cycles
= 10 cycles.

To preserve the advantage of local memory accesses, we
map into global memory every label shared among different
cores. Therefore, local labels are assured to be accessed without
contention (1 cycle access only), and the worst-case cost for
shared labels is modelled as in Section III; that is, assuming that
all cores are accessing global memory at the same time (a cost
of 4*9 cycles for each label access). Table III shows the slacks
and latencies obtained using this mapping, which confirms that
the new mapping improves the results. It is also worth noting
that with this new mapping, the results are closer to the case
ignoring memory accesses (Table I), than to the case in which
all labels are mapped to the global memory (Table II).

VI. CONCLUSIONS

This paper provides general guidelines to transform an
Amalthea timing model into a MAST equivalent model that can
be used in the MAST Analysis Tool Suite. Using them, response
time analysis has been applied to calculate worst case latencies
of tasks in a complex engine management system.

To understand the Amalthea model, we relied on the
documentation of the tool [2], and the document describing the
challenge [1]. While the basics of the model (e.g., tasks and
runnables) can be easily understood with these materials, special
elements of the model such as the event-chains required
additional inquiries in the workshop forum. The total amount of
time needed to completely digest the model can be approximated
to about 12-14 hours divided in several days. Once the model
was understood, the process of building the Amalthea to MAST
transformation in Java required approximately 5 man-hours to a
person familiar with MAST and EMF. The workspace used in
this paper can be downloaded from [10].

The paper answers the three main questions of the challenge,
(1) providing latencies when memory accesses are ignored, (2)
providing latencies when all labels are mapped to the global
memory, and (3) finding a new optimized mapping. Safer CPU
frequencies as well as indicators of the most loaded tasks and
cores in the system are provided. The main weakness we identify
in our proposal is its pessimism in the modelling of global
memory accesses. It uses an upper bound that cannot occur in
reality. This is done to overcome the limitations of MAST which
does not currently model the memory and the blocking of the
processor while the memory is accessed. These two
shortcomings have flagged interesting developments that we
will explore in the future.

REFERENCES

[1] 2016 Formals Methods and Timing Verification (FMTV) challenge, co-
located with the 7th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).
https://waters2016.inria.fr/challenge/

[2] AMALTHEA: An Open Platform Project for Embedded Multicore
Systems, http://www.amalthea-project.org/

[3] M. González Harbour, J.J. Gutiérrez García, J.C. Palencia Gutiérrez, and
J.M. Drake Moyano, “MAST: Modeling and Analysis Suite for Real Time
Applications,” Proceedings of 13th ECRTS conference, Delft, The
Netherlands, IEEE Computer Society Press, pp. 125-134, June 2001.

[4] MAST web-page, http://mast.unican.es/

[5] J. C. Palencia and M. González Harbour, “Exploiting Precedence
Relations in the Schedulability Analysis of Distributed Real-Time
Systems,” Proceedings of the 20th Real-Time Systems Symposium, IEEE
Computer Society Press, pp 328-339, December 1999.

[6] Object Management Group, “UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems,” 2011 OMG Document, v1.1
formal/2011-06-02.

[7] J.C. Palencia, J.J. Gutiérrez, and M. González Harbour. “On the
Schedulability Analysis for Distributed Hard Real-Time Systems,” Proc.
of the 9th Euromicro Workshop on Real-Time Systems, pp. 136-143, June
1997.

[8] J. C. Palencia. “Análisis de planificabilidad de sistemas distribuidos de
tiempo real basados en prioridades fijas”, Phd Thesis, University of
Cantabria, July 1999.

[9] Eclipse Modeling Framework (EMF), https://eclipse.org/modeling/emf/

[10] Amalthea workspace used for this solution:
www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip

TABLE III. END-TO-END LATENCIES (MILLISECONDS.) AND SLACKS (%), RE-
MAPPING LABELS TO LOCAL AND GLOBAL MEMORIES

 Scn-ACET Scn-WCET

 200 Mhz 233 Mhz 200 Mhz 300 Mhz 333 Mhz D

CORE0 Util. (%) 71.98 61.78 97.53 65.02 58.57

CORE1 Util. (%) 92.14 79.09 137.33 91.56 82.48

CORE2 Util. (%) 72.28 62.04 107.77 71.84 64.72

CORE3 Util. (%) 79.85 68.54 120.6 80.4 72.43

System Slack (%) 5.08 22.66 -29.3 5.86 17.58

CORE0 Slack (%) 30.41 51.98 -98.44 44.31 60.52

CORE1 Slack (%) 5.75 22.94 -98.44 6.19 17.87

CORE2 Slack (%) 38.11 61.52 -98.44 38.86 54.72

CORE3 Slack (%) 24.72 45.12 -98.44 24.12 37.38

Angle_Sync 5.78 4.50 ∞ 5.75 4.71 6.66

ISR_1 0.03 0.02 ∞ 0.02 0.02 9.5

ISR_10 0.02 0.02 ∞ 0.02 0.02 0.7

ISR_11 1.47 1.24 ∞ 1.30 1.17 5

ISR_2 0.04 0.03 ∞ 0.04 0.03 9.5

ISR_3 0.06 0.05 ∞ 0.05 0.05 9.5

ISR_4 0.51 0.44 ∞ 0.46 0.41 1.5

ISR_5 0.21 0.18 ∞ 0.19 0.17 0.9

ISR_6 0.23 0.20 ∞ 0.21 0.19 1.1

ISR_7 1.22 0.87 ∞ 1.07 0.81 4.9

ISR_8 0.76 0.63 ∞ 0.66 0.60 1.7

ISR_9 2.47 1.49 ∞ 2.23 1.39 6

Task_1000ms 31.63 17.89 ∞ 31.43 18.81 1000

Task_100ms 31.42 17.71 ∞ 31.24 18.64 100

Task_10ms 7.98 6.85 ∞ 8.04 7.24 10

Task_1ms 0.54 0.47 ∞ 0.52 0.47 1

Task_200ms 31.52 17.80 ∞ 31.34 18.73 200

Task_20ms 9.68 8.31 ∞ 9.86 8.88 20

Task_2ms 0.30 0.25 ∞ 0.27 0.24 2

Task_50ms 12.93 10.84 ∞ 13.10 11.56 50

Task_5ms 0.94 0.80 ∞ 0.90 0.81 5

EffectChain_1 (L) 12.71 12.33 ∞ 12.73 12.46

EffectChain_2 (L) 25.40 23.25 ∞ 25.56 23.97

EffectChain_3 (L) 63.53 60.83 ∞ 63.95 62.52

https://waters2016.inria.fr/challenge/
http://www.amalthea-project.org/
http://mast.unican.es/
https://eclipse.org/modeling/emf/
http://www.istr.unican.es/members/rivasjm/workspace_fmtv16_public.zip

