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Abstract—This paper proposes a solution for the FMTV
verification challenge related to the timing and schedulability
analysis of an engine management system to be executed on
a shared-memory multi-core platform. The application consists
of statically partitioned tasks, each one composed of multiple
runnables that are executed according to a read-compute-write
policy, where the memory labels required by a runnable are
loaded from memory before starting its execution, and they are all
stored after the runnable completes its execution. Tasks may be
either fully preemptive or only partially at runnable bound aries.
The contribution of the paper is threefold. First, we present a
tight schedulability analysis for this mixed-preemption setting,
neglecting memory accesses (Challenge I). Then, memory access
times and arbitration delays are included to the schedulability
analysis, addressing Challenge II. Finally, Challenge IIIis tackled
proposing different approaches to map the labels to local/global
memories so as to minimize the end-to-end latency of selected
event chains.

I. I NTRODUCTION

The purpose of this paper is to present a brief overview of
a solution to the FMTV verification challenge. The challenges
proposed are:

• Challenge I:calculate tight end-to-end latencies ignoring
memory accesses and arbitration

• Challenge II:calculate tight end-to-end latencies includ-
ing memory access and arbitration accesses

• Challenge III:optimize end-to-end latencies by mapping
the labels among the local and global memories

The rest of the paper is organized as follow. Section 2 intro-
duces the terminology and notation used in the paper. Section
3 presents the worst-case response time analysis developedto
solve Challenge I. Section 4 describes the approach appliedto
tackle memory access and arbitration accesses (Challenge II).
Finally Section 5 presents different solutions for Challenge III.

II. T ERMINOLOGY AND NOTATION

In this section, we introduce the terminology and notation
used throughout the paper, considering the information ab-
stracted from the Amalthea model. Each taskτi is specified
by a tuple (Ci, Di, Ti, Pi, PTi), whereCi is the worst-case
execution time (WCET),Di is the relative deadline,Ti is the
period, Pi is the priority, andPTi is the preemption type.
Every periodTi, each task releases a job composed ofγi
subsequent runnables, whereτi,r represents therth runnable
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Fig. 1. Notational model for tasks and runnables.

of τi, with 1 ≤ r ≤ γi. The execution time ofτi,r is denoted
asCi,r. Therefore,

Ci =
∑

r∈[1,γi]

Ci,r. (1)

We also denote asCi,r the cumulative execution time of
runnablesτi,1, . . . , τi,r, i.e.,

Ci,r =
∑

r∈[1,r]

Ci,r. (2)

Some of these parameters are exemplified in Figure1 for a
generic taskτi.

Runnables are basic workload units, whose execution fol-
lows a read-compute-write policy. The computational part of
a runnable cannot start before all its required labels are pre-
loaded from memory. Also, no label will be stored to memory
before the completion of the runnable. The preemption type
PTi may be either preemptive or cooperative. Preemptive tasks
may always preempt lower priority tasks, while cooperative
tasks may preempt a lower priority one only at runnable
boundaries. Preemptive tasks are assumed to have always a
higher priority than any cooperative task.

The execution time of a runnableτi,r is computed as
Ci,r = nI

i,r/f , wherenI
i,r is an upper-bound on the number

of instructions specified by the Weibull estimators for the
considered runnable, assuming one instruction-per-cycle(i.e.,
IPC = 1), andf is the core frequency.

The platform is assumed to comprise four identical cores,
with tasks statically partitioned to the cores and no migration
support.
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Fig. 2. Worst-case delay propagation in a runnable sub-chain.

III. M EMORY-OBLIVIOUS ANALYSIS

In this section, we present a detailed analysis of ChallengeI,
i.e, a solution tocalculate tight end-to-end latencies ignoring
memory accesses and arbitration. The latencies of interest are
those of selected effect chains, where an effect chain is a
sequence of producer/consumer runnables working on shared
labels. It is worth noting that effect chains do not have a
blocking semantic, i.e., tasks and runnables are always active
and periodically activated, independently on other runnables
and/or external events. What is interesting to analyze is the
maximum propagation delay from an initial event to the final
runnable involved in the effect chain. An effect chain is
triggered by an initial event, which needs to be processed by
one or more runnables using a read/execute/store execution
model. A first runnableτi,x may read a labelL1, compute
the necessary instructions, and store a result on a labelL2,
which will be later read by another runnableτj,y following in
the chain, and so on until the last runnable in the chain. The
end-to-end propagation delay is the maximum time that may
elapse between the initial event and the completion of the last
runnable in the chain.

It is easy to observe that an upper bound of such a delay is
given by the sum of the propagation delays for each individual
runnable in the chain [1]. In particular, consider an effect
sub-chain where a runnableτi,x writes a labelL which is
then read by another runnableτj,y . The worst-case sub-chain
propagation delay is found whenτi,x storesL right afterτj,y
started loading it, as shown in Figure 2. Under this situation,
the effect is not propagated until the next instance ofτj,y may
start executing in the subsequent periodTj, and complete its
execution after at mostRj,y time-units, whereRj,y represents
the worst-case response time of runnableτj,y. Therefore, an
upper bound on the overall end-to-end propagation delay of
an effect chainEC can be computed as

δ(EC) =
∑

τi,r∈EC

(Ti +Ri,r), (3)

where the sum is extended over all runnables belonging to
the effect chain. Note that in case the effect chain includes
two consecutive runnables that belong to the same task, it is
sufficient to consider only the delay contribution of the later
one.

To compute the upper bound of Equation 3, it is necessary
to compute the worst-case response timeRi,r of each runnable
τi,r involved in the chain. To this purpose, we will hereafter
provide a tight response-time analysis of runnables belonging

to either preemptive or cooperative tasks. Since ChallengeI
allows neglecting memory delays, we can focus uniquely on
the execution times of tasks and runnables.

A. Analysis for Preemptive Tasks

According to the considered model, preemptive runnables
can only be preempted by higher priority preemptive
runnables, and they can always preempt any lower prior-
ity task. Therefore, a preemptive task will never experience
any blocking delay due to lower priority (preemptive or
cooperative) tasks. Hence, the response time for preemptive
tasks can be computed adapting the classic response time
analysis for arbitrary deadlines presented in [2]. The arbitrary
deadline model is used instead of the simpler analysis for
constrained deadlines because there are configurations where
the response time of a task may be later than the activation of
the subsequent job of the same task, i.e., it may beRi > Ti.
Under these conditions, the maximum response time of a task
is not necessarily given by the first instance released afterthe
synchronous arrival of all higher priority tasks (also called
critical instant), but may be due to later jobs.

For each taskτi, the analysis requires checking multiple jobs
until the end of the level-i busy period, i.e., the maximum
consecutive amount of time for which a processor may be
continuously executing tasks of priorityPi or higher. The
longest Level-i active period can be calculated by fixed-point
iteration of the following relation, starting withLi = Ci:

Li =
∑

j:Pj≥Pi

⌈

Li

Tj

⌉

Cj . (4)

The number ofτi’s instances to check are therefore:

Ki =

⌈

Li

Ti

⌉

. (5)

The finishing time of thek-th instance (k ∈ [1,Ki]) of
runnableτi,r in the level-i busy period can be iteratively
computed as

fk
i,r =

∑

j:Pj>Pi

⌈

fk
i,r

Tj

⌉

Cj + (k − 1)Ci + Ci,r, (6)

where the first term in the sum accounts for the higher priority
interference, the second term accounts for the(k−1) preceding
jobs of τi, and the last term considers the contribution of the
k-th job limited toτi,r and its preceding runnables.

The response time of thek-th instance ofτi,r can then be
easily found subtracting its arrival time:

Rk
i,r = fk

i,r − (k − 1)Ti. (7)

Finally, the worst-case response time of runnableτi,r can be
found by taking the maximum among allKi jobs in the level-i
busy period:

Ri,r = max
k∈[1,Ki]

{Rk
i,r}. (8)



B. Analysis for Cooperative Tasks

The analysis for cooperative tasks is somewhat more com-
plicated, since it needs to take into account (i) the blocking
delays due to lower priority cooperative tasks that can be
preempted only at runnable boundaries; (ii) the interference
due to higher priority cooperative tasks that can preempt
the considered task only at runnable boundaries; (iii) the
interference of preemptive tasks that may always preempt even
within a runnable. To tackle this problem, we will modify
and merge the analysis for limited-preemption systems with
Fixed Preemption Points (FPP) and for Preemption Threshold
Scheduling (PTS), both summarized in [3]. The outcome will
be a necessary and sufficient response-time analysis for the
considered mixed preemptive-cooperative task model.

Under this model, a preemption threshold is assigned to
cooperative tasks. This priority is higher than that of any
cooperative task, but lower than that of any preemptive tasks.
When a cooperative taskτi is executing one of its runnables,
its nominal priorityPi is raised to the thresholdθi, so that
cooperative tasks cannot preempt it. The nominal priority is
restored when the runnable is completed, allowing cooperative
preemptions from higher priority tasks.

As with preemptive tasks, also for cooperative tasks it is
necessary to consider multiple jobs within a busy window.
However, the busy window must also include the blocking
due to lower priority tasks. The longest Level-i active period
can be calculated adding a blocking factor to the recurring
relation of Equation (4):

Li = Bi +
∑

j:Pj≥Pi

⌈

Li

Tj

⌉

Cj . (9)

Since a task can only be blocked once by lower priority
instances,Bi corresponds to the largest execution time among
lower priority runnables1:

Bi = max
j,r:Pj<Pi

{Cj,r}. (10)

Equation (5) can then be used to compute the number of
instances to check in the busy window.

The starting timeski,r of the k-th instance of runnableτi,r
can be computed taking into consideration the blocking time
Bi, the interference produced by higher priority tasks before
τi,r can start, the preceding (k-1) instances ofτi, and the
execution time of the preceding runnables ofτi,r:

ski,r = Bi +
∑

j:Pj>Pi

(⌊

ski,r
Tj

⌋

+ 1

)

Cj + (k − 1)Ci +Ci,r−1.

(11)
The finishing timefk

i,r is calculated by adding to the starting
time ski,r, the execution time of the considered runnableCi,k,
along with the interference of the tasks that can preemptτi,r,
i.e., the preemptive tasks which have a nominal priority higher

1Since the lower priority task must have already arrived before the critical
instant, the actual blocking term is actually an infinitesimal amount smaller.
We neglect infinitesimal amounts to simplify the formula.

TABLE I
END-TO-END LATENCIES IGNORING MEMORY ACCESSES(µ’ S)

Core Task WCRT Deadline U

CORE0

ISR 10 30.34 700.0 0.04
ISR 5 288.52 9000.0 0.33
ISR 6 319.47 1100.0 0.35
ISR 4 685.27 1500.0 0.60
ISR 8 1308.62 1700.0 0.78
ISR 7 2652.99 4900.0 0.84
ISR 11 4266.89 5000.0 0.90
ISR 9 4483.08 6000.0 0.93

CORE1
Task 1ms 764.35 1000.0 0.76
Angle Sync 5994.08 6660.0 0.97

CORE2

Task 2ms 262.65 2000.0 0.13
Task 5ms 1194.47 5000.0 0.31
Task 20ms 16870.06 20000.0 0.84
Task 50ms 36776.80 50000.0 0.90
Task 100ms 99719.82 100000.0 0.99
Task 200ms 99845.02 200000.0 0.99
Task 1000ms 99973.85 1000000.0 0.99

CORE3

ISR 1 35.05 9500.0 0.003
ISR 2 52.8 9500.0 0.005
ISR 3 76.73 9500.0 0.008
Task 10ms 9992.16 10000.0 0.99

Effect Chain End to End Latency
Effect Chain 1 13378.124
Effect Chain 2 149691.134
Effect Chain 3 72196.007

than the preemption threshold of any cooperative task. To
compute this last interfering term, we compute the higher
priority instances that may arrive from the critical instant until
the finishing time, and subtract those that arrived before the
starting time.

fk
i,r = ski,r+Ci,r+

∑

j:Pj>θi

(⌈

fk
i,r

Tj

⌉

−

(⌊

ski,r
Tj

⌋

+1

))

Cj . (12)

Equation (7) and (8) can then be identically used to compute
the worst-case response timeRi,r of the considered runnable.

Since the deadlines are missed and the utilization is over
1 in almost all cores, we have reduced the worst case exe-
cution time of some runnables in order to make the system
schedulable, Table I shows the results of the first challenge.

IV. M EMORY-AWARE ANALYSIS

In this section, we address Challenge II, including memory
and arbitration accesses in the computation of the end-to-end
latencies. We follow an identical approach as the one described
in the previous section, inflating the runnable execution times
Ci,r with the maximum possible interference produced by
memory-related delay.

We assume all labels be loaded/stored to global memory,
leaving the improvements related to the use of local memories
to Challenge III discussed in the next section. The delay for



a global memory access is of 8 cycles for crossbar traversing
and 1 cycle for the memory access. Since conflicting memory
accesses are assumed to be arbitrated in a First-In-First-Out
fashion, the memory access time has to be multiplied by the
number of coresm that may concurrently access the global
memory, i.e., four cores in our setting:m = 4. The overall
memory access delay can then be found by multiplying the
single access delay by the number of readsnR and writesnW

performed by the considered runnable. Therefore, the resulting
WCET Ci,r for a runnable can be computed as:

Ci,r = (nI/f)+(8+(1∗m)∗nR)+(8+(1∗m)∗nW ) (13)

The multiplying factorm accounts for the maximum possi-
ble interference by all cores in the system, that is, we assume
that cores continuously generate interfering traffic. Thisis a
pessimistic assumption that may be improved by accounting
for data access patterns of target applications, which are known
in the Amalthea model. In particular, a possible solution can
be found along the lines of the work presented by Nelis et al.
in [4], where a method is introduced to model the memory
access patterns of a task considering the contention on a
shared bus (and not a crossbar, as in the considered model).
Other approaches that could be used to tackle this problem are
presented in [5] and [6]. However, the computational cost of
these solutions is exponential in the number of tasks and the
granularity of memory patterns, making it difficult to apply
for the considered setting.

V. M EMORY MAPPING STRATEGIES

As requested in Challenge III, this section discusses how to
optimize end-to-end latencies by means of a suitable mapping
of the labels among the local and global memories. Before
tackling this challenge, it is first necessary to question the
notion of “optimality” for this setting. As we will show in
this section, a given label-to-memory mapping can reduce
end-to-end latencies for certain effect chains at the cost of
increasing those of other chains, making it difficult to take
globally optimal decisions.

In a first step, we performed a preliminary analysis of the
memory accesses performed by all runnables in the given
Amalthea use-case. We categorized the data items (labels) in
three sets:

1) PRIVATElabels, which are exclusively accessed by one
runnable;

2) SHARED labels, which are accessed by multiple
runnables (e.g., in a producer-consumer fashion);

3) UNUSEDlabels, which we ignore.

Table II shows the number of labels in the proposed model,
and their total memory occupation in KBytes, while Figure
3 shows how many (PRIVATE and SHARED) labels are
accessed by (runnables assigned to) each core, and their size
in bytes (right).

A first consideration is that there is potentially sufficient
space to store all labels in any of the memories of the system,
eiher in LRAMs (size 128 KB, according to the specifications)

# Size (KB)
PRIVATE 8293 22.1
SHARED 1690 9.50
UNUSED 17 -

TABLE II
LABELS

Fig. 3. Distribution of labels on runnables/cores

or GRAM (256 KB). For this reason, and for the sake of
simplicity, we do not consider memory constraints in our
analysis. Enhancing our model and approach including limited
memory is left as a future work. Moreover, we assume that all
labels can be accessed with a single memory read, neglecting
the fact that there are labels which are larger than the bus
width (i.e., occupy 64 or 128 bits against a 32-bit bus), hence
more consecutive memory accesses may be required for a label
transfer. However, the proposed methodology can be easily
extended to deal with this issue.

For the PRIVATE labels, an optimal choice seems to map
them to the local memory of the core that exclusively accesses
them, because the latency of local accesses to LRAM is always
significantly smaller than that to GRAM (1 cycle vs. 8+1
cycles, respectively). Since there are no constraints on the local
memory size with relation to the overall labels footprint, mov-
ing local labels to other (local or global) memories would only
increase the resulting latencies. Moreover, this cannot possibly
degrade the delays on other cores, because weremoveda
potential source of contention. This is a quite known technique
when programming distributed Non-Uniform Memory Access
(NUMA) systems [7].

We defineTLRAM as the time spent in the worst case to
access a private label stored in local memory, andTGRAM as
the worst-case time to access a label stored in shared memory.
Assuming the worst-case conflicts in both memories,

TLRAM = (m− 1) ∗ 1(FIFOqueue) + 1(memory) = m

TGRAM = 8(xbar)+1(memory)+(m−1)∗1(FIFO) = 8+m,

where numbers are in clock cycles, andm is the number of
cores in the system. Note that time to access private labels
store in the local memory may be lower thanm when some
of the other cores has no label to access in that local memory.
This would reduce the number of instances waiting in the FIFO



queue. In the extreme case where each LRAM contains only
private labels,TLRAM = 1, since there will never be any
conflict in accessing local memories.

Moving to the mapping problem of shared labels, we could
use a similar approach to map each label to the LRAM “closer”
to the core that mostly accesses it. Unfortunately, this could
worsen the latencies of other runnables on the same core when
accessing private labels stored in the local LRAM, because
now they may conflict with remote accesses from other cores.
The proposed heuristic is convenient if the accesses to shared
labels are more frequent than those on private labels, so
that the increased conflicts in accessing private labels are
compensated by the gain in loading a shared label from LRAM
instead of GRAM.

If memory access patterns are not taken into account, the
increase in the latency for private accesses is the same if we
map one or all theshared labels to the local memory. As a
consequence, if we decide to map a single shared label onto
the LRAM of a core, paying the consequent private access
penalty, it would then make sense to map to that LRAM also
other shared labels that are most frequently accessed by that
core, since there would not be any further penalty to private
accesses. This seems to suggest an“if one, then all” approach,
according to which a local memory is either left free from any
shared label, or it is filled with the most frequently accessed
shared labels by the corresponding core.

From the Amalthea model, we know that several runnables
act in a producer-consumer fashion, forming multipleeffect
chains. As we showed, privileging one runnable might have the
side effect of degrading performance for some other runnables
on the same core, which might belong to a different effect
chain. For this reason,it is difficult to design a methodology for
shared label mapping which “optimizes” end-to-end latencies
in a “generic” sense in the proposed model. What can be
more easily done is tailoring the label mapping problem to
one or few privileged effect chains, reducing the latency of
the corresponding runnables by selecting their most suitable
mapping strategy.

VI. CONCLUSIONS

This paper presented a set of possible solutions for the
FMTV 2016 Verification Challenge. The main contribution is
a tight schedulability analysis for the considered task model
in which cooperative and preemptive tasks are concurrently
scheduled on the same partitioned platform. Such an analysis
has then been extended to include memory access delays
and to propose promising heuristics for mapping labels to
local memories. A Java implementation is available for the
algorithms described in the paper, collecting the information
given by the Amalthea model and producing a response time
analysis for the task system as well as valid upper bounds
on the worst-case end-to-end latency of the effect chains.
The source code and the tool may be downloaded from our
website2.

2http://hipert.mat.unimore.it/FMTV16/

We already identified possible future enhancements of our
approach, for all of the addressed challenges:

1) For Challenge I, we intend to explore how enlarging the
non-preemptive region beyond runnable boundaries may
improve the response time of the runnables, and related
effect chains, as shown in [8];

2) for Challenge II, we aim at exploring approaches based
on memory access pattern, such as [4], [5], [6], to
improve the computed memory access delays;

3) for Challenge III, we intend to enhance our Java imple-
mentation with automatic placement functions to mini-
mize the end-to-end latencies of selected effect chains.

Finally, and most importantly, we plan to apply co-scheduling
techniques recently proposed in [9], [10] to avoid conflicting
access by design, significantly reducing the penalties due to
memory accesses. We believe that the proposed use-case may
be a useful benchmark to test the efficiency of co-scheduling
approaches.
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