
Logical Execution Time Implementation and
Memory Optimization Issues in AUTOSAR

Applications for Multicores
Alessandro Biondi, Paolo Pazzaglia, Alessio Balsini, Marco Di Natale

Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: {alessandro.biondi, paolo.pazzaglia, alessio.balsini, marco.dinatale}@sssup.it

Abstract—The 2017 FMTV challenge has been extended to
consider with better precision the details of the HW platform; the
need for synthesis and optimization methods, and also introduces
for consideration the Logical Execution Time (LET) model.
In this paper we highlight some of the problems and issues
that relate to the implementation of the LET model and then
we present and compare two approaches for optimizing the
placement of the labels in memory, including the time analysis
methods that will be used for the system. The paper concludes
with a discussion on the next steps and other fundamental
issues that are related to the general problem of optimizing the
placement of computations in multicore platforms.

I. INTRODUCTION

The FMTV 2017 challenge consists of a timing analysis
problem in which the AUTOSAR model of a set of cooperating
tasks in a fuel injection application is deployed onto a 4-core
platform. The objective of the challenge is to study the possible
conditions for the implementation of the Logical Execution
Time (LET) model in the runnables communication and to
provide methods for the analysis of the memory allocation
of the communication variables (labels) in the model. The
variables need to be allocated in the available memory spaces
(local and global) of the AURIX microcontroller.

The LET model was introduced as part of the Giotto
programming paradigm [1] as a method to eliminate output
jitter and provide time determinism in the code implementation
of controls. In essence, the LET delays the program output of
a task (or any function executed inside the task) at the end of
the task period, trading delay for output jitter.

The analysis of the LET implementation is performed under
the assumption of the mechanisms and tools that are typical
of an AUTOSAR process. In AUTOSAR, the computation
functions are called runnables and the communication im-
plementation is provided by a layer of code automatically
generated by tools: the Run Time Environment or RTE. The
consideration of the AUTOSAR process greatly influences
the implementation options. For the LET implementation
we discuss two possible implementation options: one that
is compatible with the current mechanisms and tools of the
standard AUTOSAR process, the other with a simple extension
to the AUTOSAR implicit communication implementation
(providing for a much more efficient solution).

For the label placement optimization problem, we discuss
a simple method to bound the worst case latency when real-
time tasks access a memory bank possibly competing with
other tasks. Using the provided bound for the memory latency,

we developed two algorithms to solve the problem: a simple
Genetic Algorithm solution and an MILP formulation.

We provide the results of these two optimization methods
with an additional discussion on how to tackle the runnable
placement optimization problem, which is most likely the most
relevant design issue for a system like this.

II. SYSTEM MODEL AND NOTATION

The challenge model is a case study from the Amalthea EU
project and it is in large part compliant with the AUTOSAR
metamodel. As such, the model adopts from AUTOSAR
definitions and most of the semantics for the activation and
communication of functions (runnables in AUTOSAR). An
attempt at the formal characterization of the challenge model
is the following.
Task and runnable model. A task τi is composed of an
ordered sequence of ni runnables ρi,1, . . . , ρi,ni , each of
which has its execution time Ci,j , defined as a truncated
Weibull distribution. For the purpose of worst-case analysis,
the worst-case execution time (WCET) Ci,j and a best-case
execution time ci,j may be computed from the distribution
Ci,j . Each runnable ρi,j may read or write labels from a set
L = {l1, l2, . . . , lp}. Each label li is characterized by a type
and a size (an integer number of bytes). Each task is defined
by a tuple τi = {Ci, Ti,Li, Di}, where Ci is the execution time
distribution of the task, simply computed as the convolution
of the distribution of the task runnables (by extension Ci and
ci are the worst and best case task execution times); Ti is
the period or minimum inter-arrival time of the task activation
event(s); Li denotes the set of labels accessed by τi; and Di is
the relative (to the activation time) deadline. When applicable,
relative deadlines are constrained to be smaller than or equal
to periods, i.e., Di ≤ Ti. Ni,v denotes the number of times τi
accesses label `v ∈ Li.

In the worst case (the reasoning also applies to other types of
analysis but we only discuss the worst-case analysis here), the
execution time Ci,j of a task may be expressed as the sum of
the runnable execution times in the task. The execution times
provided with the challenge do not include the execution cost
to read and write the memory labels.

The scheduling of each task is also controlled by its schedul-
ing mode (cooperative or preemptive) and its priority πi, with
preemptive tasks having higher priority than cooperative tasks,
and cooperative tasks only preempting each other at runnable
boundaries.

We denote as Ri,j the worst-case response time of the j-th
runnable of task τi, while ri,j denotes its best-case response
time. hpP (i) and hpC(i) denote the set of preemptive and
cooperative tasks, respectively, having priority greater than τi.
We denote as hp(i) = hpP (i) ∪ hpC(i) the union of the two
disjoint sets.
Platform model. There are m = 4 identical processors
P1, . . . , Pm. There are four local memories M1, . . . ,Mm (one
for each core) and a global memory Mm+1. The platform
disposes of a crossbar switch that provided point-to-point
communication channels between each core and each memory.
Concurrent accesses to memory are arbitrated with a FIFO
queue.
Task and label allocation model. The allocation of the tasks
is fixed and given in the provided Amalthea model. P (τi)
denotes the processor to which τi is allocated; Γ(Pk) denotes
the set of tasks allocated to processor Pk; and Γ(τi) denotes
the set of tasks allocated to the same processor to which τi
is allocated. An allocation of the labels is also provided in
the Amalthea model. The following notation is used when
discussing the label allocation. Mk denotes the set of labels
allocated to memory Mk. λR denotes the delay introduced by
task during a conflict to a remote memory, while λL denotes
the delay introduced by task during a conflict to its local
memory. The maximum time needed to access a word into
memory Mx from processor Px is denoted by

∆k,x =

{
δL if k = x (local memory),

δR otherwise.

where δR denotes the time needed to access a remote
memory (GRAM or local RAM of another processor), and
δL denotes the one needed to access the local memory Mk.
We assume λL = δL and λR = δR. Based on the challenge
information, the memory access and conflict times are λL = 1
cycle and 5 ns; λR = 9 cycles and 45 ns;

Finally, with respect to a given allocation of the labels, the
time MAi,v needed to access label `v ∈ Li from task τi is
defined as MAi,v = ∆k,x where Pk = P (τi) and Mx is
the memory in which `v is allocated. The same terminology
applies to runnables.

A. The LET model of execution
The Logical Execution Time model was probably first

presented as part of the Giotto project [1]. The objective
of the LET model is to add time determinism to periodic
computations by eliminating the output jitter.

from program to output variables

τ1

τ2

τ3

τ3

LET input LET output

LET

from input to program variables

Fig. 1. The LET model of execution.

The LET execution model can be summarized as depicted
in Figure 1. In the figure, the output of task τ2 (denoted

by the upward arrow at the end of the box representing the
task execution) has a significant jitter. Because of variable
interference from τ1, it occurs late in the first task instance and
much earlier in the second. The LET solution is shown in the
bottom timeline for task τ3 (taken as an example). The input
of the task data is performed at the task activation, and the
output is performed at the end of the task execution period. All
task inputs are stored in local variables at the task activation.
Similarly, all outputs need to be stored in local variables and
will be actually output only by the LET code at the end of
the cycle. This requires to allocate memory for local variables
mirroring all input and output variables.

Several mechanisms can be used to enforce the LET syn-
chronization of input and output operations, as a hardware or
software implementation. In essence, LET is a sample and
hold mechanism with synchronized execution of the input and
output part. As such it is not too dissimilar to mechanisms
used to enforce flow preservation in the implementation of
synchronous models [2], [3]. When LET is implemented in
SW (the HW implementation would not affect the design
analysis or the challenge goals) assuming a typical AUTOSAR
development model (for more information on the related
assumptions please refer to [4], [5]), there are two main
options:

• LET is implemented as part of the Run-Time Environ-
ment (RTE) with support from the basic SW;

• LET is implemented at the application level by a set of
dedicated runnables.

In both cases, since it requires a dedicated set of tasks
(and the corresponding scheduling configuration), the LET
implementation will most likely be modeled as a set of RTE
or application-level input and output tasks. Since it is required
that the input and output operations of these tasks are executed
as close as possible to the start and end of period instants,
these tasks should be characterized by a very short WCET
and a very high priority level. This has several implications
that are further discussed in the implementation section.

• There may be more than one task dedicated to the input
and output sampling for LET execution. If this is the
case, then these tasks will internally preeempt each other
and the design of this additional set of tasks may be a
subproblem in its own.

• The execution of the output task (or action) at the
end of the period may be very difficult to obtain wth
conventional scheduling strategies (“as late as possible
execution” is typically not supported). In this case the
output task needs to be actually executed at the begin-
ning of the next cycle, possibly in conjunction with the
corresponding input task (in a back-to-back fashion).

III. TIMING ANALYSIS WITH MEMORY CONTENTION

This section presents a response-time analysis for tasks
under partitioned fixed-priority scheduling that explicitly ac-
counts for the delay introduced by memory accesses and their
corresponding memory contention. The same analysis can be
extended to runnables in a seamless manner.

Under the assumption of constrained deadlines, the worst-
case response time of a task τi is bounded by the least positive
fixed-point of the following recurrent equation:

Ri = Wi +
∑

τj∈hp(τi)
τj∈Γ(τi)

⌈
Ri
Tj

⌉
Wj +MCi(Ri) (1)

where Wi = Ci +
∑
`v∈Li

Ni,v · MAi,v (i.e., the worst-
case execution time of the task plus the cost for accessing
its labels) and MCi(Ri) represents the delay due to memory
contention incurred by τi and all the high-priority tasks, which
transitively affect the response time of the task under analysis.

Since memory contention is resolved according to the FIFO
policy, a safe bound on the term MCi(Ri) can be obtained by
simply inflating the terms Wi to account for m−1 contentions
for each memory access. However, this approach may lead
to excessive pessimism, thus resulting in very coarse upper-
bounds on the response times.

In this work, we use the inflation-free analysis [6], [7]
to bound the blocking times for a synchronization protocol
for multiprocessor systems. Inflation-free analysis explicitly
accounts for each memory access that may originate a con-
tention while task τi (under analysis) is pending. To this end,
we proceed by bounding the maximum number of accesses
NRAk,x(t) issued by tasks executing on the remote processors
Pk 6= P (τi) to each memory Mx in an arbitrary time window
of length t, that is

NRAk,x(t) =
∑

τj∈Γ(Pk)

∑
`v∈Lj∩Mx

⌈
t+Rj
Tj

⌉
Nj,v. (2)

Note that the above equation considers the sum over all the
tasks allocated to Pk as they can produce memory contention
independently of their priority (FIFO arbitration). The term
d(t+Rj)/Tje is a safe bound on the maximum number of
jobs of τj ∈ Γ(Pk) in any time window of length t [6], [7].

Similarly, we also bound the number of accesses NLAi,x(t)
issued by the local processor P (τi) to each memory Mx in an
arbitrary time window of length t while τi is pending, that is

NLAi,x(t) = Ni,v +
∑

τj∈hp(τi)
τj∈Γ(τi)

∑
`v∈Lj∩Mx

⌈
t

Tj

⌉
Nj,v. (3)

Due to the FIFO arbitration and the fact that the memory
accesses are non-interruptible, it follows that (i) each memory
access issued by a remote processor can delay at most one
access issued by the local processor and (ii) each access issued
by the local processor can be delayed by at most one remote
access per processor; hence the following bound holds:

MCi(t) =
∑

Pk 6=P (τi)

m+1∑
x=1

min {NRAk,x(t), NLAi,x(t)}·Λk,x,

(4)
where the term Λk,x is provided to distinguish the delay

introduced by the memory contentions as a function of each
pair (Pk,Mx), and is defined as

Λk,x =

{
λL if k = x (local conflict),

λR otherwise.

Equation (4) can be used in Equation (1) to bound the
response times of the tasks. The term NRAi,k,x(t) depends
on the response time of the tasks allocated to the remote pro-
cessors: this additional recursive dependency can be addressed
with an iterative loop in which Equation (1) is solved for all
the tasks until all the response-time bounds Ri converge. Such
an iterative loop starts with Ri = Ci for all tasks τi.

IV. IMPLEMENTING AND ANALYZING THE LOGICAL
EXECUTION MODEL IN AUTOSAR

This section discusses solutions for the implementation and
the analysis of the LET model in AUTOSAR.

A. LET implementation as part of the RTE generation
The discussion on the implementation of the LET model

cannot be undertaken without the joint consideration of the
typical AUTOSAR model for the generation of task code and
the execution of runnables. AUTOSAR has two models of
communication. In the explicit model (top of Figure 2) the
copy of the data in the communication variables is performed
at the time each runnable invokes the communication API
function. The implementation of the LET model in this case,
would require the definition of two LET runnables that act
as proxies for the read and write operations. The reader and
writer runnable should execute according to the pattern defined
in the following section.

In the implicit model, even if a read or write operation is
invoked by the runnable in the middle of its execution, the
actual code implementing the read from and write into the
shared variables is automatically generated as part of the RTE
code at the beginning and at the end of the runnable code.
The result of the read operation is sampled at the beginning
of the runnable execution and then stored in a local variable
for the duration of the runnable execution. Similarly, the write
value is locally stored in a variable and then output by RTE
code after the runnable execution (shown in the middle of
Figure 2, the darker rectangles before and after the runnable
execution represent the RTE code). If the RTE generation tools
are not modified, the LET implementation in this case would
require yet another set of runnables and an additional set of
variables, which is clearly a source of additional memory and
time overhead.

Fig. 2. Code implementation of the LET model of execution with explicit or
implicit communication.

However, it is relatively straightforward to see how a simple
modification of the RTE generation process for the implicit
communication model would be the best solution. A simple
RTE generation option could result in moving the input and

output to the LET tasks rather than the runnable boundaries.
The RTE generator could generate the LET input and output
tasks together with the other RTE-generated code.

B. Reader and Writer Tasks, Definition and Analysis

The general architecture and scheduling of the input and
output tasks in a LET model is discussed at lenght in [8]. In
their work, input and output tasks are scheduled together with
mode change tasks assuming a time-triggered schedule with
jitter constraints for the input and output operations.

In the case the tasks are implementing AUTOSAR
runnables, the input and output tasks can serve all the tasks
executing at the same rate. Of course, if a task has runnables
executing at multiples of the task period, the corresponding
input and output sections can be skipped when unnecessary.
The input and output LET tasks may be scheduled using the
AUTOSAR time-triggered mode when available, in order to
ensure the output task is executed right before the end of the
period of the tasks it serves. In a priority-based schedule, like
the one assumed in the challenge, the output and input tasks
may be joined and executed back to back at the beginning
of each period. To arbitrate among the input and output
operations for the tasks executing at different rates there are
several options between two extremes: one is to have a single
LET task executing at the greatest common divisor of the task
periods (most likely inefficient for the challenge model). The
other extreme is to have a LET task for each period. Of course
partial groupings may be possible and may be more efficient
in some cases.

In our challenge model we assume a LET task for each
period. LET tasks have higher priorities than the other tasks
(to enforce the precedence constraints) and we assign their
relative priorities according to Rate-Monotonic.

V. THE CHALLENGE MODEL

The provided challenge model has a set of special charac-
teristics that affect the analysis and optimization methods and
strongly characterize the obtained results.

First and foremost, the tasks are allocated on the cores
accroding to a specific strategy. The first core only executes
interrupt service routines. The same is true for the fourth core,
that also executes a 10ms periodic task. The second core only
executes (most likely details are not provided) a variable rate
task (triggered at predefined angles in the engine rotation), and
a very high rate 1ms periodic task. All the other periodic tasks
are executed by the third core.

Using the worst-case execution times provided in the model,
the system is definitively in overload with the following per-
core utilizations: 0.97, 1.336, 1.068 and 1.179. We attribute
the large overload in the second core to the modeling strategy
adopted for the Angle_sync task. We deem such a task
to be an engine-triggered task with variable activation rate
and speed-dependent adaptive beahavior. The provided model
mostly likely considers a minimum inter-arrival time for the
maximum engine speed, and a WCET computed for the
most time consuming operating mode. This is pessimistic
and explains the overload. The explicit consideration of the
adaptive variable-rate (AVR) task model [9] would improve
the analysis precision.

To optimize the system configuration based on the worst
case behavior, we need to restore feasibility and to definie a
suitable cost function. To restore feasibility, we consider the
mean execution times in place of the worst-case.

As a cost function, after the discussion on the forum and
based on the recommendations of the organizers, we selected
the maximum normalized (with respect to the deadline) re-
sponse time of the tasks, as in the function

C = max
τi∈Γ(Pk),∀Pk

Ri
Di
, (5)

VI. END-TO-END LATENCY

We adopted the analysis provided in [9] to compute the
end-to-end latency of the effect chains.

However, in order to consider the influence of sporadic com-
putational activities, the best-case response time computation
for a runnable ρi,j must be corrected as follows:

ri,j =

j∑
h=1

ci,h +
∑

k∈hp(i)

Nact
k ck (6)

where Nact
k is defined as:

Nact
k =

{
d ri,jTk
e − 1 for periodic tasks;

0 for sporadic tasks.
(7)

The ISRs have been considered as sporadic tasks: this choice
has been adopted because the maximum inter-arrival time of
the ISRs provided in the Amalthea model seems too close to
the minimum one.

In this paper, the computation of end-to-end latencies is
provided only for the case of explicit communication. The
case for LET-based communication is straightforward (modulo
some minimal interference caused by high-priority LET tasks).

1) Effect Chain 1: In the effect chain 1, all runnables
belong to the same task (Task 10ms, allocated to core 3). As
there is backward communication between the third and the
fourth runnable, this adds a one cycle delay until the last datum
is read. Therefore, the worst-case end-to-end latency of this
effect chain by L2F can be computed as:

LL2F
1 = T10ms +R10ms,107 (8)

This result is valid also when considering the L2L semantics.
As for the F2F semantics, the analysis needs to consider a one
cycle delay for the first runnable, that is:

LF2F
1 = 2T10ms +R10ms,107. (9)

2) Effect Chain 2: Runnables in this chain belong to
different tasks with different rates. In this case, the end-to-
end latency calculation should also consider the over-sampling
effect between pairs of consecutive runnables. By the L2F
semantics, we obtain:

LL2F
2 = R100ms,7 + min(T10ms − r10ms,19, T100ms)

+R10ms,19 + min(T2ms − r2ms,8, T10ms) +R2ms,8

As for the F2F semantics, due to the over-sampling effect,
there are no input overwritings, hence the end-to-end latency
is simply given by:

LF2F
2 = LL2F

2 + T100ms.

Finally, the end-to-end latency computation for the L2L
semantics requires to verify Condition (8) from [9], for any
pair of consecutive runnables.

LL2L
2 = R100ms,7 + n̂1 · T10ms − r10ms,19 +R10ms,19

+n̂2 · T2ms − r2ms,8 +R2ms,8.

3) Effect Chain 3: Also in this case, runnables belong
to different tasks with different rates. Task periods have
increasing values, leading to an under-sampling effect.

By the L2F semantics we obtain:

LL2F
3 = R700/800us,3+min(T2ms− r2ms,3, T700/800us)+

R2ms,3+min(T50ms−r50ms,36, T2ms)+R50ms,36 µs

Due to the sporadic nature of the first runnable, we assume
T700/800us = 800 µs in order to maximize latency.

The end-to-end latency by the F2F semantics requires to add
one cycle delay with respect to L2F and to verify Condition (8)
from [9] for any pair of consecutive runnables.

LF2F
3 = T700/800us + n1 · T700/800us +R700/800us,3+

n2 · T2ms +R2ms,3 +R50ms,36 = 75559 µs.

Finally, the end-to-end latency for the L2L semantics is
equal to the L2F case, because no output is overwritten due
to the under-sampling effect.

VII. OPTIMIZING THE PLACEMENT OF MEMORY LABELS

This section discusses possible approaches to compute the
optimal placement of label and label copies (for LET) in
memory. We tried two possible solutions (MILP and Genetic
Algorithm) for the case of explicit communication and LET-
based communication.

A. Genetic algorithm
Due to the extremely large set of labels to be positioned,

a metaheuristic has been chosen to find a sufficiently good
solution. A Genetic Algorithm (GA) approach has been found
to be the most suitable candidate for this problem. Hereafter
the structure of the algorithm is briefly presented.

Using the common nomenclature for GAs, we define a
possible label placement as an individual I. Each individual
is encoded as an ordered string of 10000 RAM ids (genes),
representing the position of each label in the memories. The
set of individuals (called population) is firstly initialized ran-
domly. At every step we evaluate each individual with a fitness
function that is the cost function identified for the challenge:
F (I) = C(I) i.e., the maximum normalized response time
among all tasks with the labels positioned as in I.

At every iteration, the solutions are reordered by following
their fitness values F (I) (the smaller the better) and divided
in three subsets: (i) reproductive survivors (elite), (ii) non-
reproductive survivors, and (iii) extinct individuals. The next
generation is created by selecting random couples of parents
between the elite group, that generate new individuals using
a crossover function: this strategy swaps randomly selected
blocks of genes between the parents and save the resulting
solutions as a new individuals. At the same time, extinct
individuals are removed from the population.

The exploration of new individuals in the solution space
is guaranteed by using also a certain number of mutation
functions, which randomly change a limited (and casually
chosen) number of genes in the population. Each function
has different activation probabilities and consist in random
changing label positions, moving labels from one memory to
another one, and spreading labels from one memory to all the
others. On the other hand, in order to maintain a sort of elitism,
a (small) number of clones of the best solutions are copied in
the next generation without mutating.

B. MILP formulation
The formulation of the problem as a mixed-integer linear

program (MILP) required facing with several challenges that
cannot be discussed here due to lack of space. For the same
reason, the complete MILP formulation, with the correspond-
ing proofs of the constraints, is omitted. However, it is worth
discussing two approximations that have been applied to the
analysis of Section III in order to express the response-time
bounds in a linear form.

First, instead of searching for the least positive fixed-point
of Equation (1), we adopted the approximated response-time
analysis proposed by Park and Park in [10]. Under rate-
monotonic scheduling, the authors showed (with an exper-
imental evaluation) that their approximation introduces an
extremely limited error (≤ 1%) with respect to the exact
response-time analysis. By extending Theorem 4 in [10] to
cope with the analysis presented in Section III, the response
time of a task τi (if schedulable with a constrained deadline)
is bounded by

Ri = min
t∈Si

ri = Wi +
∑

τj∈hp(τi)
τj∈Γ(τi)

⌈
t

Tj

⌉
Wj +MCi(t) : ri ≤ t

(10)

where Si =

{⋃
τj∈hp(τi)
τj∈Γ(τi)

⌊
Ti

Tj

⌋
Tj , Ti

}
.

This approximation results very useful for encoding the
response-time bound into a MILP as (i) it allows getting rid
of the typical integer variables that are needed to model the
term with the ceiling of Equation (1) (note that the terms
in the set Si are all constants, hence that term is in turn a
constant); and (ii) it allows avoiding the need for quadratic
constraints, which is implied by the fact that the terms Wj

must be optimization variables (note that their values depend
on the label placement).

Second, to avoid requiring additional integer variables, the
term NRAk,x(t) of Equation (2) has been over-approximated
by replacing Rj with Dj .

Finally, it is worth mentioning that we leveraged on lower-
bounds of the response times to reduce the number of MILP
variables (and the corresponding constraints) that must be
provided to encode Equation (10). The lower-bounds have
been computed by accounting for one clock cycle for each
access to a label, which corresponds to the best case where
labels allocated in local memory and no contention is possible.
Such bounds allows reducing the elements into the set Si.
A taste of the MILP formulation. A binary variable Av,x has
been provided to each couple of label `v and memory Mx, with

the interpretation that Av,x = 1 iff `v is allocated to Mx. Such
variables have been constrained such that

∑m+1
x=1 Av,x = 1

holds for each label `v ∈ L.
The actual worst-case execution time Wi of a task τi

allocated to processor Pk can then be expressed with the
following linear constraint:

Wi ≥ Ci +

m+1∑
x=1

∑
`v∈Li

Ni,v ·∆k,x ·Av,x.

The objective of the MILP formulation is to minimize
Equation (5).

VIII. EXPERIMENTAL EVALUATION

A. LET model implementation
For the purposes of this challenge, the LET model has been

implemented only for the runnables involved in effect chains;
the only jitter-sensitive parts of the system.

The effect chains are composed of 10 runnables and 7
labels. The approach proposed in this paper for the LET
implementation requires adding high-priority LET tasks dedi-
cated to copying and writing data implied in the effect chain.
Runnables belonging to the same task need only one collective
task, thus only 5 LET tasks must be added to the system. As
every label needs two local copies (one for reading one for
writing), the total number of labels is increased by 14.

B. Optimal label placement: MILP formulation
The MILP formulation has been solved with IBM CPLEX

on a machine equipped with an 8-core processor Intel(R)
Xeon(R) E5-2609v2 running at 2.50GHz. The solver is able
to immediately found (very first iterations) a feasible solution
for the label placement.

For the case of explicit communication, the optimal place-
ment is computed in about 1 hour and 20 minutes, but
the solver is able to provide a sub-optimal solution with a
guaranteed gap to the optimum lower than 1% in less than two
minutes. The value of the objective function for the optimal
solution is 0.8505. Recomputing the objective function with
the analysis presented in Section III we obtain 0.849555:
this result confirmed the effectiveness of the approximation
adopted in the MILP formulation. Using the label placement
provided in the Amalthea model of the challenge, the objective
function is 1.32634: hence, our solution provides an improve-
ment that is larger than 35%.

The label placement for the optimal solution is illustrated in
Figure 3 (dark bars). As shown in the graph, most of the labels
are allocated in the local memory of the first core (LRAM0).

For the case of LET communication, the optimal placement
is computed in about 1 hour and 50 minutes. Similarly to the
first case, the solver is able to provide a sub-optimal solution
with a guaranteed gap lower than 1% in less than seven
minutes. Using the label placement provided in the Amalthea
model of the challenge, and placing the 14 labels required for
implementing the LET communication as in our solution (as
they do not exist in the challenge data), the objective function
is the same for the case of explicit communication.

Surprisingly, the label placement is completely different
from the one computed for the case of explicit communication
(see Figure 3, light bars), as most of the labels are allocated in

5562

1596

197

2530

115

1368
1531

4604

2442

69

0

1000

2000

3000

4000

5000

6000

LRAM0 LRAM1 LRAM2 LRAM3 GRAM

N
u

m
b

er
 o

f
la

b
el

s
p

er
 m

em
o

ry

Explicit LET

Fig. 3. Placement of the labels for the case of explicit (dark bars) and LET-
based (light bars) communication.

the local memory of core 2 (LRAM2). This result is attributed
to the fact that the analysis is dominated by the Angle_sync
task and the 1ms periodic task on core 1: as a consequence,
the optimization algorithms will mostly optimize the labels
used by these tasks, while the placement of the other labels
is almost indifferent (with possibly few exceptions due to
memory conflicts).

C. Optimal label placement: Genetic Algorithm
The Genetic Algorithm approach has been implemented in

C++ and executed on an Intel(R) i7 4790K running at 4GHz.
The population has been set to 200 individuals I, all initialized
randomly, and the termination condition of the algorithm has
been defined to complete 30000 iterations. A feasible solution
(with objective function < 1) is usually reached after the
first 2000 iterations. The algorithm takes approximatively 5
seconds per iteration, with a completion time of less than
40 hours. For each communication semantic we produced
approximately 20 distinct simulations.

For the case of explicit communication, the best results
obtained with the Genetic Algorithm is an objective function
of 0.85161, while for the LET communication the value is
0.85173. The solutions obtained are only slightly worse than
the ones found with the MILP formulation, but required a large
running time to be computed.

D. End-to-end latencies
End-to-end latencies of the effect chains have been com-

puted using the optimal label placement that has been obtained
with the MILP formulation. The best and worst case response
times of the runnables under explicit communication are
reported in Table I, while the corresponding latencies of the
effect chains are reported in Table II.

Under LET-based communicaiton, once a label placement
that guarantees the task schedulability is found (as done by the
proposed optimization algorithms), the end-to-end latencies
can be computed in a straightforward manner. Further inves-
tigation may target the integration of the end-to-end latencies
as constraints in the MILP formulation, with the objective
of computing label placements that guarantee specific timing
constraints related to the effect chains.

TABLE I
RESPONSE TIMES (µSEC) FOR THE RUNNABLES IN THE EFFECT CHAINS

UNDER EXPLICIT COMMUNICATION.

Runnable name Best RT Worst RT Period
Runnable10ms149 2077.68 4118.33 10000
Runnable10ms243 3315.99 6328.08 10000
Runnable10ms272 3644 7175.57 10000
Runnable10ms107 1367.16 2745.87 10000
Runnable100ms7 152.335 13820.5 100000
Runnable10ms19 298.715 650.74 10000

Runnable2ms8 55.465 117.12 2000
RunnableSporadic700us800us3 17.815 27.11 700

Runnable2ms3 20.025 42.385 2000
Runnable50ms36 1070.3 13089.6 50000

TABLE II
END-TO-END LATENCIES FOR THE EFFECT CHAINS UNDER EXPLICIT

COMMUNICATION.

Chain index Latency type Latency value (µs)
1 L2F 12746
1 F2F 22746
2 L2F 26234
2 F2F 126234
2 L2L 154234 (n̂1 = 11 and n̂2 = 5)
3 L2F 15959
3 L2F 75559 (n1 = 2 and n2 = 30)

IX. DISCUSSION OF RESULTS AND CONCLUSIONS

In this work, we presented the methods and algorithms
to provide an AUTOSAR-compliant implementation of the
logical execution time (LET) model and to optimize the
placement of memory labels in the system.

We believe the methods are applicable, perform quite sat-
isfactorily, and can provide early indication on the quality
of a given mapping configuration (or find a very effective
one). However, there are several limitations in the challenge
configuration that affect the results.

First and foremost, given the cost function and the current
task set (and its core allocation), the analysis is dominated
by the Angle_sync task and the 1ms periodic task on the
same core. This means that the optimization algorithms will
in practice mostly optimize the labels used by these tasks and
be almost indifferent to the others (this explains why the LET
solution and the solution without LET appear quite different
with very similar cost values).

Also, this reiforces the concept, already illustrated in the
previous challenge submission, that the runnable and task
placement dominates all other considerations and is therefore
our primary objective for future research. A discussion of
possible forumlations and the additional issues and problems
can be found in [11].

REFERENCES

[1] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, “From
control models to real-time code using giotto,” in Control Systems
Magazine, IEEE, 2003.

[2] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli, “Improving
the size of communication buffers in synchronous models with time
constraints,” in IEEE Transactions on Industrial Informatics, vol. 5 (3),
2009, pp. 229–240.

[3] H. Zeng and M. Di Natale, “Mechanisms for guaranteeing data consis-
tency and flow preservation in autosar software on multi-core platforms,”
in 6th IEEE International Symposium on Industrial Embedded Systems
(SIES), Vasteras, Sweden, June 2011.

[4] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated
to integrated architectures in automotive: The role of standards, methods
and tools,” in Proceedings of the IEEE, vol. 98 (4), 2010, pp. 603–620.

[5] A. Ferrari, M. Di Natale, G. Gentile, G. Reggiani, and P. Gai, “Time
and memory tradeoffs in the implementation of autosar components,”
in Design, Automation and Test in Europe Conference. DATE’09, April
2009.

[6] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR: block-
ing analysis of FIFO, unordered, and priority-ordered spin locks,” in
RTSS’13.

[7] A. Biondi and B. Brandenburg, “Lightweight real-time synchroniza-
tion under P-EDF on symmetric and asymmetric multiprocessors,” in
ECRTS’16.

[8] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered
language for embedded programming.” in Proc. International Workshop
on Embedded Software (EMSOFT), volume 2211 of LNCS, Springer,
Ed., 2001, pp. 166–184.

[9] A. Biondi, M. D. Natale, and G. Buttazzo, “Response-time analysis
for real-time tasks in engine control applications,” in Proceedings of the
6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, April 14-16, 2015.

[10] M. Park and H. Park, “An efficient test method for rate monotonic
schedulability,” IEEE Transactions on Computers, vol. 63, no. 5, 2014.

[11] A. Biondi, M. Di Natale, Y. Sun, and S. Botta, “Moving from single-
core to multicore: initial findings on a fuel injection case study,” in SAE
Technical Paper, SAE Conference, Detroit, USA, April 2016.

