
Addressing Analysis and Partitioning Issues
for the WATERS 2019 Challenge

Daniel Casini, Paolo Pazzaglia, Alessandro Biondi, Giorgio Buttazzo, and Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy
Email: name.surname@santannapisa.it

Abstract—The WATERS 2019 Challenge seeks to find suitable
models and analysis techniques for providing safe bounds to the
response times of next-generation applications for autonomous-
driving systems. This paper highlights the challenges arising from
the scheduling of such workloads onto heterogeneous platforms,
proposing modeling solutions and time-aware partitioning tech-
niques aimed at minimizing the end-to-end latencies of processing
chains.

I. INTRODUCTION

The WATERS 2019 Challenge aims at finding models and
analysis techniques tailored to the needs of next-generation
applications for autonomous systems. Such software compo-
nents are becoming more and more complex, and require high
computational power. This need can be addressed by running
these workloads on top of powerful heterogeneous platforms
with multiple cores, graphical processing units (GPUs), and
reconfigurable FPGAs [1], where cores are often capable of
running at different processing speeds. The WATERS 2019
Challenge provides the NVIDIA Jetson TX-2 as a reference
platform. The Jetson TX-2 is composed of six cores, organized
in two processor islands. The first provides four ARMv8 A57
cores running at 1.9 GHz, while the latter contains two 2
Ghz ARMv8 Denver cores. Each core (of both types) disposes
of a 32KB L1 data cache and a 48KB L1 instruction cache.
Internally to each island, cores share a 2MB L2 data cache.
The platform is also provided with an iGPU (integrated GPU),
composed of 256 CUDA cores grouped in two streaming
multiprocessors (SMs), where each SM disposes of a 64KB
L1 cache and shares a 512KB L2 cache with the other SMs.

From the application side, the challenge describes the re-
quirements of a prototype for an Advanced Driver-Assistance
System (ADAS), composed of 9 tasks, which cover the oper-
ations incurred by the whole computing path from the sensors
input to the steer command. Pursuing the goal of providing the
shortest possible worst-case response, computational activities
(i.e., tasks) need to be properly mapped to the processor
islands. Furthermore, some of them are also provided with a
CUDA implementation, allowing to offload their computation
to the GPU. Therefore, the challenge model gives rise to a
non-trivial partitioning problem.

Contributions. The contribution of this paper is threefold.
First, a scheduling model encompassing the requirements of
the WATERS 2019 Challenge is presented. The proposed
model is able to describe tasks that can experience different
execution times depending on the type of core on which they

are mapped, and to offload part of the computation on the
GPU. The scheduling model is intentionally simple to match
the specifications provided by the WATERS 2019 challenge.
Second, a method for analyzing such tasks is presented.
The offloading to GPUs is analyzed by means of the self-
suspending task theory. Finally, the analysis is linearized to
be included in a Mixed-Integer Linear Programming (MILP)
formulation of the optimization problem, aimed at minimizing
the end-to-end latencies of the processing chains by selecting
the priority assignment, the task-to-core placement, and deter-
mining which tasks to accelerate on the GPU. Optimization
results are discussed by comparing different trade-offs.

II. SYSTEM MODEL

The model of this paper is based on the WATERS 2019
Challenge [2]. Our proposal for a formal characterization of
the challenge model follows.
Platform Model. The WATERS 2019 Challenge Platform
Model is based on the NVIDIA Jetson TX2, shown in Figure 1.
This heterogeneous platform is composed of a quad-core
1.9GHz ARMv8 A57, a dual-core 2GHz ARMv8 Denver, and
an integrated GPU. Consequently, the proposed system model
comprises 2 types of processor cores X = {x1, x2}. Each type
xi is characterized by a number of cores mi, with m1 = 4
(A57 cores) and m2 = 2 (Denver cores). We enumerate the
cores with an index k ∈ {0, . . . ,m1−1,m1, . . . ,m1+m2−1}.
We will then refer to the core with index k using the notation
pk. The integrated GPU is referred to with the symbol G.
CPU Task Model. Tasks are executed on cores according to
partitioned fixed-priority preemptive scheduling1. A task τi on
a CPU is composed of an interleaved sequence of execution
regions and acceleration regions, i.e., τi = {R1

i , . . . , R
w
i }.

Within each acceleration region, the CPU-task is not executing
on a core, but waits for the completion of a GPU task
that corresponds to an operation offloaded to the accelerator.
For each task τi, a flag ai denotes whether there exists an
implementation that can be accelerated on G. For the purposes
of our work, we will consider the offloading to be always
synchronous (a different interpretation of this term is used
in the challenge description — see Section VI). Under this
scheme, when a task offloads the computation to the GPU, it

1It is possible to configure a Linux-based system (as the one de-
scribed in the challenge) with partitioned fixed-priority by assigning tasks
to the SCHED FIFO scheduling class and specifying affinities with the
sched_setaffinity() system call.



A57 cores

Denver 

cores

GPU

N
V

ID
IA

 J
e

tso
n

TX
-2

Figure 1. NVIDIA TX-2 platform abstraction

suspends its execution on the CPU, thus allowing the execution
of other workload. This is in reality only one of the possible
synchronization options offered by the CUDA API, but not
necessarily the most efficient for solving the problem: we
discuss about other possible synchronization options in Sec-
tion VI. The offloading type ai ∈ {S,N} denotes if τi offloads
its computations to the accelerator (S for synchronous) or not
(denoted by N) – a set is used to easily extend the model
to support other options for specifying the synchronization
semantics in the future. If ai = S, then τi is accelerated.
Acceleration should refer to each region. However, since the
challenge tasks only have one possible acceleration region,
for simplicity, ai refers to the entire task. When ai = S,
all accelerable operations of τi are offloaded to the GPU. If
ai = N, then task τi is entirely executed on a CPU. Clearly,
if ai = FALSE⇒ ai = N.

Each j-th execution region is composed of an ordered se-
quence of nji runnables Rji = {ρji,1, . . . , ρ

j

i,nj
i

}, i.e., sequential

portions of code. Each runnable ρji,s is characterized by a
worst-case execution time (WCET) Cji,s(x

i
h), which depends

on the type xih of the core on which τi is allocated. Depending
on the value of ai, different operations can be needed, e.g.,
input data may need to be copied to/from the accelerator if
ai 6= N. Consequently, the list of runnables associated to a task
τi may change depending on the value of ai. The total duration
of the j-th execution region of τi is denoted by Ci,j(xh, ai)
and is computed as the sum of the WCETs of all its runnables.

Conversely, the time that is required for processing the j-
th acceleration region of τi, denoted by Ai,j , is not known a
priori and depends on the response time of the computations
executing on the GPU. An upper-bound to the duration of each
acceleration region is provided in Section III. If ai = FALSE,
the task τi is composed of a single execution region and no
acceleration region exists. For convenience, the sum of all the
lenghts of all the execution regions is defined as

Cki =

{∑
j Ci,j(xh, ai) if τi executes on pk,

0 otherwise,

where k is used to denote the core index. Conversely, the sum
of all the time spent executing in the acceleration (modeled as
suspension) regions is defined as Ai =

∑
j Ai,j .

Each task releases a potentially infinite sequence of job each
separated by a minimum inter-arrival time Ti. Each job needs

to complete within its relative deadline Di ≤ Ti, i.e., within
Di units of time from its release.
GPU Task Model. Due to lack of space, we omit a de-
tailed description of the GPU scheduling mechanism: for a
more comprehensive discussion, please refer to the WATERS
2019 Challenge description [2]. Under the challenge assump-
tions [2], each GPU task τGi corresponds to a CPU task
τj , i.e. it is possible to define a mapping P(·) such that
τj = P(τGi ). Each GPU-task consists of multiple segments,
each one corresponding to the execution requirement needed
by one of the acceleration regions of τj . The h-th segment of
τGi is characterized by a worst-case execution time CGi,h. For
the weighted round–robin scheduling, each task τGi is assigned
to a time-quantum Qi ∈ [1, 500] ms. Note that, according
to our measurements, these assumptions provided with the
challenge do not match the scheduling policy implemented
by the Jetson TX2.

III. RESPONSE-TIME ANALYSIS

This section presents a response-time analysis for tasks
running on top of a heterogeneous platform, where each task
starts and completes each instance on one of the CPU cores,
but the computation can potentially be offloaded to the GPU
multiples times during execution, i.e., in correspondence of
acceleration regions. Consequently, there exists a one-to-one
mapping between each acceleration region of a CPU-task and
one of the segments of a GPU task. However, the duration
of each acceleration region is unknown, and depends on the
response time of the corresponding task executing on the GPU.
To solve this issue, a response-time bound for GPU tasks is
proposed next.

A. Response-Time Analysis for GPU Tasks
As discussed in Section II, GPU tasks are assigned to a

time quantum Qi and scheduled according to a weighted-round
robin scheduling policy. Each tasks is allowed to execute up
to Qi consecutive time units, then it is preempted and another
task τj can execute for at most Qi units. GPU tasks are served
in a cyclic manner. If a job needs less than Qi time units
to complete or there are no ready jobs of τi when its time-
slice becomes available, the task is preempted or the execution
slot is skipped. Due to the synchronous offloading mechanism
adopted on the CPU side, each CPU task can have at most
one pending acceleration at a time. Under the assumption of
constrained deadlines, note that at most a single segment of a
GPU task is executed in each time quantum. A supply-bound
function sbf i(t) can be used to model the minimum amount
of service provided by the GPU scheduling algorithm to each
task τi in any interval of time of length t. Such a function
is shown in Figure 2 and (for k ≥ 1) can analytically be
expressed as:

sbf i(t) =

{
(k − 1)Qi + t− t∗(k) if t∗(k) < t ≤ t∗(k) +Qi

kQi if t∗(k) +Qi < t ≤ t∗(k + 1),
(1)

where, t∗(k) = k∆i+(k−1)Qi, ∆i =
∑
τj∈GS :τi 6=τj Qj , and

k =
⌈
t−∆i

∆i

⌉
.



𝜏1

∆

𝑡

𝑠𝑏𝑓𝑖(𝑡)

𝜏3𝜏2 𝜏1 𝜏3𝜏2

2𝑄𝑖

𝑄𝑖

∆𝑖 ∆𝑖 + 𝑄𝑖 2∆𝑖 + 𝑄𝑖 𝑡

𝑡

Figure 2. Supply-bound function for a task τi scheduled with the weighted-
round robin policy.

Consequently, the response time RGi of a GPU task τGi (if
schedulable with a constrained deadline) is bounded by the
least positive solution Rki of the following equation:

sbf i(R
G
i ) = CGi,MAX , (2)

where CGi,MAX = max {CGi,h | CGi,h ∈ C(τGi )}.
If τGi is the GPU task associated with a CPU task τj =

P(τGi ), the length any of the acceleration regions of τj
can be bounded by the worst-case response time of τGi as
computed with Equation (2). In the specific case of the task
set provided with the challenge model, each CPU task has a
single acceleration region. Once an upper-bound to the lengths
of acceleration regions is available, the response-time of CPU
tasks can be analyzed.

B. Response-Time Analysis for CPU Tasks

When the offloading is synchronous, CPU tasks can be
analyzed as self-suspending tasks [3]. When a task offloads
part of its computation to the GPU, it suspends on the CPU.
Several analysis techniques are available in the literature
(please refer to the work by Chen et al. [3] for a detailed
review). Here, we briefly recall the approach in which the
timing effects of suspensions of interfering tasks are accounted
as release jitter [3], due to its fitness in being linearized and
used in an optimization problem. In this model, acceleration
regions correspond to suspension regions. Consequently, the
response time of Rki of a CPU task τi running on core pk is
upper bounded by the least positive solution of the following
recursive equation:

Rki = Cki +Ai +
∑

τs∈hpk(τi)

⌈
Rki + Jks

Ts

⌉
Cks (3)

where hpk(τi) is the set of tasks with priority higher than τi
allocated to pk, Jks = Rks − Cks if as = S (i.e. if the task is
performing offloading to the GPU), and Jks = 0 otherwise. A
task set is deemed schedulabile if ∀τi, Rki ≤ Di.

A more convenient formulation for the schedulability test is
to check feasibility of a set of time intervals [4]:

∃t ∈ Si : Cki +Ai +
∑

τs∈hpk(τi)

⌈
t+ Jks
Ts

⌉
Cks ≤ t, (4)

In [4] the set of check-points for the time interval is defined
ad Si = {aTs : τs ∈ hps(τi) ∧ a = 1, . . . bTi/Tsc}. However,
Pazzaglia et al. [5] showed that a sufficient-only schedulability
test with a very limited pessimism (less than to 2% of the
considered cases) can be obtained by checking Equation (4)
in a quadratic subset of the schedulability points in Si. The
analysis can be extended to self-suspending tasks by using the
subset of check-points for the case of scheduling with jitter
in [5]:

Si =
{
aTs − Jks : τs ∈ hpk(τi) ∧ a =

⌊
Di + Jks
Ts

⌋}
∪ {Di}

(5)
In this work, this simple and convenient approach has been
exploited to encode an optimization problem aimed at finding
solutions for the task-to-core and priority assignment that
minimizes the end-to-end latencies of the processing chains
contained in the challenge model.

IV. OPTIMIZATION PROBLEM

This section presents a formulation of the WATERS 2019
Challenge problem in the form of a MILP. The main objectives
of the proposed formulation are the following:
• minimize end-to-end latencies of processing chains, ac-

cording to the proposed objective function;
• select the most convenient task-to-core placement, ac-

counting for both variable WCETs depending on the core
type and the interference due to other tasks assigned to
the same core;

• determine whether to accelerate tasks to find the most
convenient trade-off between smaller WCETs occurring
when a task is accelerated and longer acceleration regions
when the GPU load is high (i.e., when multiple tasks are
accelerated);

• optimize the priority assignment; and
• ensure schedulability, i.e., guarantee that each task com-

pletes within its deadline.
The linearization of this problem requires a solution to several
non-trivial issues, which cannot entirely be discussed here due
to lack of space. In this section, only the points explicitly
related to the peculiarities of the problem are presented:
the interested reader can refer to prior works (e.g., [6]–[8])
for hints about how some of the other constraints can be
formulated. The proposed optimization problem is general
enough for being applicable to a variety of task sets similar
to the one included in the WATERS 2019 Challenge. For the
sake of clarity, the following discussion directly refers to the
challenge task set, as summarized in Table I (all time values in
ms). The first part of the table reports the tasks parameters, by
listing names, periods, and worst-case execution times, both
when accelerated (field CA

i ) or not (field CNA
i ). The second

part of the table reports the priorities, CPU mapping, and ai
values obtained by solving the proposed optimization problem.
The following constraints make use of a numerical constant
M to represent infinity, which is useful to code conditional
constraints (a standard technique called big-M).



Table I
PARAMETERS AND SOLUTIONS OF THE OPTIMIZATION PROBLEM FOR THE TASK SET PROVIDED WITH THE CHALLENGE MODEL.

A57 Denver GPU Solution
ID Name Ti (ms) CNA

i CA
i CNA

i CA
i Ci PRIO CPU ai

0 OS Overhead 100 52,632 - 50 - - - - -
1 Lidar Grabber 33 14,379 - 10,868 - - 5 0 N
2 DASM 5 1,958 - 1,3 - - 7 2 N
3 CAN Polling 10 0,632 - 0,6 - - 4 1 N
4 EKF 15 5,011 - 4,430 - - 9 3 N
5 Planner 12 13,939 - 12,437 - - 3 5 N
6 SFM 33 31,055 8,320 27,812 6,711 6,320 6 1 N
7 Localization 400 407,811 18,568 294,808 14,516 99,200 2 4 S
8 Lane Detection 66 53,732 8,667 42,238 7,626 21,867 8 4 N
9 Detection 200 - 4,958 - 4,086 92,800 1 1 S

GPU Offloading. A binary variable AC i is introduced for
each task τi to denote whether τi is offloaded to the GPU.
The task set used in the challenge naturally imposes some
constraints on this variable: (i) only the SFM, Localization,
and Lane Detection tasks are provided with a both a CPU
and GPU implementation, while (ii) the Detection task is only
provided with a GPU implementation, i.e., AC i = 0, for i =
0, . . . , 5 and AC 9 = 1. For the other tasks, the MILP solver
is free to select whether to accelerate the task (i.e., to select
the value of AC i, for i = 6, 7, 8).

Heterogeneous WCETs. The tasks provided with the chal-
lenge model are characterized by different execution times,
depending on the type of core they are executed upon and
whether they are accelerated. For each task, two variables ESi
and ENi are used to model the execution time of task τi when
ai = S (τi is accelerated) and ai = N (τi is not accelerated),
respectively. The following constraints are enforced:

ESi =

6∑
k=1

CA
i,k · Pi,k, ENi =

6∑
k=1

CNA
i,k · Pi,k,

where Pi,k is a binary variable set to 1 if task τi is allocated to
core pk, and CA

i,k and CNA
i,k are constants denoting the WCET

of task τi when allocated to core pk and is accelerated (CA
i,k)

or not accelerated (CNA
i,k ). Finally, a variable Ei is associated to

each task τi to select the WCET value according to the value of
AC i, i.e., Ei = ENi if AC i = 0, Ei = ESi otherwise. This
condition is enforced by means of the following constraints:

Ei ≥ ENi − (1−AC i) ·M,

Ei ≥ ESi −AC i ·M.

Length of acceleration regions. As discussed in Sec-
tion III-A, the length of the acceleration regions of CPU
tasks can be upper-bounded with the response time of the
corresponding GPU tasks. Nevertheless, the analysis of Sec-
tion III-A is based on the supply-bound function sbf i(t),
which is highly non-linear and thus not suitable for being
implemented in a MILP. Hence, we consider a simpler lower-

bound for the supply-bound function, defined as [9]:

lsbf i(t) = max(0, αi(t−∆i)) ≤ sbfi(t),

where ∆i is defined as in Section III-A and αi = Qi

Qi+∆i
. This

function is still not linear but can be more easily encoded in a
MILP. By using lsbf i(t) and recalling that the response time
of the longest segment of a GPU task τGj upper bounds the
length of any acceleration region Ai of the corresponding CPU
task τi = P(τGj ), it is possible to rewrite Equation (2) as:

αi · (Ai −∆i) = CGi,MAX . (6)

To implement Equation (6) as a MILP constraint we recall that
the service delay ∆i is defined as ∆i =

∑
τj∈GS :τi 6=τj Qj ,

but the set of tasks contained in GS is a variable of the
optimization problem. We introduce the auxiliary variable x
and the constraint x =

∑9
j=6Qj ·AC j , which accounts for the

budgets of the tasks offloaded to the GPU (i.e., if AC j = 1).
With the definition of x and the corresponding constraint, it
is possible to rewrite Equation (6) as:

Ai − (x−Qi) ≥
CGi,MAX

Qi
· x− (1−AC i) ·M.

This constraint is linear only under the assumption that all
budgets are constant and not optimized by the optimization
problem.

OS Overhead. The challenge model provides an additional
tenth task τ0, not involved in any processing chain, to model
the overall overhead due to the operating system. Unfortu-
nately, no detailed information concerning the modeling of
the OS overhead is provided with the challenge. For the
sake of simplicity, we assume that an equal portion of τ0
interferes on each core. Hence, a simple upper-bound to the
interference generated by such a task on each core is given by
IOS (t) =

⌈
t
T0

⌉
C0,MAX /m, where C0,MAX is the maximum

WCET of τ0 (see Table I).

Objective function. We implemented our partitioning with
an objective function that aims at minimizing the maximum
end-to-end latency LMAX of any processing chain. We recall



that the end-to-end latency of a set of tasks γx involved in a
processing chain can be computed as [10]:

Lx =
∑
τi∈γx

(Ri + Ti)− Tfirst , (7)

assuming that the external event triggering the chain arrives
synchronously with the release of the first task τfirst ∈ γx of
the chain.

V. EVALUATION

The task set provided with the WATERS 2019 Challenge
results to be unschedulable. Indeed, the utilization U5 =
C5,(xh, a5)/T5 of the Planner task (see Table I) is 1.036
and 1.16 if the task is scheduled on a Denver or A57 core,
respectively. To make the problem feasible, WCETs have been
scaled by a factor 0.8. The proposed MILP formulation has
been solved with IBM CPLEX on a machine equipped with
an Intel Core i7-6700K @ 4.00GHz. The solver is able to find
the optimal solution within one minute. Table II summarizes
the various task chains provided in the challenge model, which
are graphically shown in Figure 3. The column ’Tasks’ reports
the IDs of the tasks included in each processing chain (see
Table I for details). To mimic a pseudo-fluid (with respect to
the bandwidth αi) provisioning of service time, we set the
value of the time quantum for each GPU task to 1 ms (i.e., to
the minimum value allowed by the challenge specifications)
for each accelerated task — as a first attempt, we were not
interested in accounting for precise GPU scheduling issues
due to the coarse-grained approximations mandated by the
challenge model (see Section VI). As discussed in Section IV,
the time quantum is a fixed parameter of the optimization
problem. When considering the OS overhead as discussed in
Section IV (task τ0), the solver was not able to find a solution
to the problem. This issue is due to the presence of some
latency-sensitive tasks, i.e., tasks with very-low tolerance to
additional delays. This is the case of the DASM task, which
has a short deadline. To overcome this issue, we scaled the
worst-case execution time of τ0 by a factor γ ∈ [0, 1]. The
minimum value γ = 0.292 leading to a feasible solution of
the optimization problem has been found by binary-search:
the corresponding solution is reported in Tables I, and II, in
which all time values are expressed in ms. Lower values of the
priority index correspond to higher priorities. CPU indexes in
the range [0; 3] belong to A57 cores, whereas the range [4; 5]
refers to Denver cores. To confirm our previous considerations,
it is possible to observe from the solution reported in Table I
that: (i) the latency-sensitive DASM task is allocated in isola-
tion on core 2, and (ii) the Planner task, which has very-high
utilization, is allocated in isolation on core 5. From Table I, we
can observe that it is convenient to accelerate the Localization
tasks (together with the Detection task): indeed, the gain in
terms of WCET obtained by accelerating it is much higher than
those obtained by accelerating the SFM and Lane Detection
tasks. Table II reports the latencies (in ms) of the processing
chains, computed as reported in Section IV. As expected, the

Table II
LATENCIES OBTAINED FOR THE VARIOUS PROCESSING CHAINS.

ID Tasks Latency (ms)
0 9 - 5 - 2 232,615
1 6 - 5 - 2 65,615
2 8 - 5 - 2 98,615
3 3 - 7 - 4 - 5 - 2 682,883
4 1 - 7 - 4 - 5 - 2 686,436
5 1 - 5 - 2 46,168
6 3 - 4 - 5 - 2 63,673
7 3 - 5 - 2 42,615

longest chains are those involving the Localization task, which
has a large period (see Equation (7)).

VI. POSSIBLE EXTENSIONS AND CONCLUSIONS

This paper provides solutions for modeling, analyzing,
and partitioning real-time applications running onto a GPU-
enabled heterogeneous platform. The proposed approach rep-
resent a simple and flexible way for finding a suitable task-to-
core mapping for real-time autonomous applications, and for
deciding whether to accelerate tasks provided with both CPU-
based and GPU-based implementations. Nevertheless, due to
space issues and the problem complexity, we had to focus only
on a subset of the problems arising from the WATERS 2019
challenge. Limitations and interesting directions for future
research are discussed next.
Memory-aware analysis. Due to lack of space, the analysis
proposed in this paper does not consider the effect of memory
contention. To the best of our knowledge, the policy adopted
by NVIDIA memory controllers to arbitrate the accesses
to memory is currently undisclosed, although an empirical
characterizations of the memory interference generated by
concurrent accesses performed by CPU cores and the GPU is
available in the literature [12]. A black-box experimentation
aimed at determining how memory accesses are arbitrated
(e.g., similar to the one presented by Amert et al. [13]) is
a possible next research step towards memory-aware analysis
techniques for heterogeneous platforms.

Due to the non-negligible memory space requirements of
some components commonly found in autonomous applica-
tions (e.g., big deep neural networks) and the effects of mem-
ory placement on the timing behavior (for instance allocating
them to the main memory or in the cache, e.g., by adopting
locking techniques), an interesting future research line consists
in analyzing the maximum memory space requirement [14]
demanded by an autonomous real-time application executed
upon an heterogeneous platform.
Analysis. Due to its flexibility in being coded as an opti-
mization problem, this paper adopted a schedulability analysis
for self-suspending task where suspensions are accounted as
execution time for the task under analysis and as release jitter
for interfering tasks. Future work should aim at improving
the precision of the analysis implemented in our MILP-based



1. Lidar 7.Localization 4. EKF

3.CAN Pooling 6. SFM

2. DASM5. Planner

8. L. Detection 9. Detection

CPU implem.legend CPU/GPU implem. GPU implem.

Figure 3. Processing chains of the WATERS 2019 Challenge. The number on the side of each task represent the task ID, imported from the challenge data.

partitioning algorithm, for instance integrating it with the
analysis by Nelissen et al. [15].

Another interesting researching direction consists in ana-
lyzing the performance of the processing chains provided in
the challenge model when implemented with a data-driven
activation. With such a semantics, an instance of a task with
data dependencies from other tasks is triggered only when
dependencies are satisfied. New analysis techniques are needed
to consider platform heterogeneity, e.g., extensions to the
Compositional Performance Analysis [16, 17] (CPA) or to
recent methods for analyzing parallel tasks under partitioned
scheduling [18, 19] by means of self-suspending task theory.
GPU Modeling. According to our measures obtained by
profiling the Jetson TX 2 platform, the round-robin scheduling
performed by the Jetson TX2 does not seem to match the
model proposed with the challenge. Indeed, scheduling does
not seem to be performed in the time-domain but with the
granularity of CUDA kernels. Furthermore, according to our
knowledge of the CUDA API, synchronous offloading to the
GPU still involves a suspension of the calling task (and not
active waiting as discussed by the challenge). Richer task
models, with respect to the self-suspending task model, are
required to properly analyze asynchronous offloading.
Extension to ROS-based systems. The autonomous appli-
cation presented in the WATERS 2019 Challenge assumes
to be implemented as a standalone program, without using
the facilities provided by Robotic Operating System (ROS).
Nevertheless, due to the increasing use of ROS in the design,
development and deployment of autonomous systems, the in-
tegration of the approach proposed in this paper with state-of-
the-art techniques for analyzing ROS [20] systems represents
an interesting direction for future research.

REFERENCES

[1] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable fpgas,” in Proc. of the IEEE Real-Time Systems Sympo-
sium (RTSS 2016), December 2016, pp. 1–12.

[2] A. Hamann, D. Dasari, F. Wurst, I. Saudo, N. Capodieci, P. Burgio, and
M. Bertogna. WATERS Industrial Challenge 2019.

[3] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, R. Rajkumar,
D. de Niz, and G. von der Brüggen, “Many suspensions, many problems:
a review of self-suspending tasks in real-time systems,” Real-Time
Systems, Sep 2018.

[4] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in [1989]
Proceedings. Real-Time Systems Symposium, Dec 1989.

[5] P. Pazzaglia, A. Biondi, and M. D. Natale, “Simple and general methods
for fixed-priority schedulability in optimization problems,” in Proceed-
ings of the International Conference on Design, Automation and Test in
Europe (DATE 2019), March 2019.

[6] A. Wieder and B. B. Brandenburg, “Efficient partitioning of sporadic
real-time tasks with shared resources and spin locks,” in 2013 8th IEEE
International Symposium on Industrial Embedded Systems (SIES), June
2013.

[7] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2017.

[8] A. Biondi, G. Buttazzo, and M. Bertogna, “A design flow for support-
ing component-based software development in multiprocessor real-time
systems,” Real-Time Systems, Oct 2018.

[9] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE Real-Time Systems Symposium, 2003.

[10] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in 2007 44th ACM/IEEE Design Au-
tomation Conference, June 2007.

[11] B. B. Brandenburg, “A fully preemptive multiprocessor semaphore
protocol for latency-sensitive real-time applications,” in 2013 25th
Euromicro Conference on Real-Time Systems, July 2013, pp. 292–302.

[12] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between CPU cores and integrated GPUs in mixed-
criticality platforms,” in 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2017.

[13] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS), Dec 2017.

[14] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Memory feasibility
analysis of parallel tasks running on scratchpad-based architectures,” in
2018 IEEE Real-Time Systems Symposium (RTSS), Dec 2018.

[15] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis, “Timing analysis of
fixed priority self-suspending sporadic tasks,” in 2015 27th Euromicro
Conference on Real-Time Systems, July 2015.

[16] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” IEEE
Proceedings - Computers and Digital Techniques, March 2005.

[17] J. Rox and R. Ernst, “Compositional performance analysis with im-
proved analysis techniques for obtaining viable end-to-end latencies in
distributed embedded systems,” Int. J. Softw. Tools Technol. Transf.,
vol. 15, no. 3.

[18] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), May
2016.

[19] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE
Real-Time Systems Symposium (RTSS), Dec 2018.

[20] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based
scheduling,” in Proceedings 31th Euromicro Conference on Real-Time
Systems (ECRTS 2019), 2019.


