
Dynamic criticality management with ARTEMIS

Olivier CROS

LIGM / Université Paris-Est

Bat Copernic - 5, bd Descartes

77454 Champs sur Marne, France

olivier.cros0@gmail.com

Geoffrey EHRMANN

LACSC

37 quai de Grenelle

75015 Paris, France

geoffrey.ehrmann@gmail.com

Laurent GEORGE

LIGM / Université Paris-Est, ESIEE

2 Boulevard Blaise Pascal

93162 Noisy-le-Grand, France

lgeorge@ieee.org

Abstract—In this work, we propose to detail the mixed-
criticality integration inside our network simulator ARTEMIS.
The objective here is to propose a solution to manage and simulate
concrete criticality level changes inside network infrastructures,
in order to focus on a network topology reconfiguration w.r.t to
critical and non-critical messages evolutions. Through a transmis-
sion time computation model based on a probabilistic approach,
we propose a solution to generate flowsets integrating mixed-
criticality, in order to simulate the scheduling of these flowsets
through different topologies.

I. INTRODUCTION

A. About real-time simulation

In strongly constrained industrial domains like spacecraft,
public transports or aircraft, reliability and performances are
two fundamental objectives which imply defining strict time-
liness constraints to prevent system failures. It seems obvious
for everyone to imagine the huge human disaster represented
by an aircraft network crash at landing, not to mention the
financial impact of such events.

As a matter of fact, new protocols and architectures in
real-time networks must be certified before being deployed
on industrial structures. These protocols have to be analyzed,
verified and tested to be proved reliable and safe to be
implemented. But operating the tests directly on real physi-
cal systems can appear to be very costly. As a conclusion,
these real tests should done when most of the protocol has
already been validated. That is why, in order to prepare and
run performances and reliability tests replacing some of the
physical tests, we need to define simulation tools.

For the real-time network simulation, we propose a dedi-
cated network simulator. This simulator is called Another Real-
Time Engine for Message-Issued Simulation (ARTEMIS).

B. Related work

ARTEMIS has already been presented in [1], [2] as an
open-source user-oriented real-time network simulation tool.
Its architecture was similar to real-time multicores and multi-
processors schedulers architectures like Cheddar [3] (a mod-
ular framework for schedulability analysis), SchedMCore [4]
(toolbox for multicore simulation), and SimSo [5] (an open-
source tool designed for multiprocessor context).

There also exists different network simulators, which are
more oriented to industrial context. We can mention NS [6] for
global network simulation or OmNET++ [7] for dimensioning

and performances purposes. Concerning Real-Time (RT) net-
works architectures, there also exists different simulators to ob-
serve and manage specific network architectures : CANoe [8]
for Controller Area Network (CAN) or the work presented
in [9] for Avionics Full DupleX switched ethernet (AFDX).

ARTEMIS is a RT network simulation tool, providing
schedulability analysis for network topologies. Based on a
generic component-oriented model (see [1]), the purpose of
ARTEMIS is to propose the integration of mixed criticality
constraints inside network topologies. This integration was
partially detailed in [2] but the mixed criticality management
model presented was rather incomplete. In this work, we
propose to detail a more dynamic and configurable mixed
criticality model integration inside ARTEMIS, and we detail
the technical solutions we have done to represent and manage
mixed criticality inside a simulation environment.

C. Contributions

The architecture of ARTEMIS (described in [10]), is orga-
nized around a set of external modules (grapher, generators)
based on a scheduling simulation core. Based on the work
presented in [10], we integrated in ARTEMIS core two main
models for mixed criticality management. First, we designed
centralized and decentralized criticality management to store
and share the criticality level among all the nodes of a topol-
ogy. Then, in order for the core to act independently and to
simulate criticality change events scenarios (not just depending
on user actions), we designed a new message generation model
inside the core. That is what we detail below in III and IV.

The integration of these new protocols implied to change
a part of the generation and scheduling model of ARTEMIS,
dedicated to the criticality management inside each node. The
modular architecture of ARTEMIS allowed us to design a
dedicated part for criticality management, without requiring
to modify the input or output data formalization. We also re-
inforced the design and conception fundamentals by improving
the Graphical User Interface (GUI) for a better user experience.
We added new functionalities for web-oriented and distributed
context, to make ARTEMIS a sharable tool designed to be
installed on public web servers. We detail this in II.

We propose to test different potential schedulability anal-
ysis results and to evaluate the impact of mixed criticality
integration inside different network topologies. This is showed
through different simulations, detailed in V. We now describe
the different improvements inside ARTEMIS global architec-
ture.



II. WEB-ORIENTED ARCHITECTURE

A. Global architecture

ARTEMIS’ Graphical User Interface (GUI) is the link
between users and simulator’s kernel. It has to interpret mes-
sages between users and kernel in order to make possible
the communication between these two entities. To build a
simulation, users must configure a network through the GUI,
then the interface sends data to the kernel as XML files. The
kernel runs the simulation and returns XML files containing
simulation results. Once XML files are parsed, GUI displays
results as XML logs or graphs.

Fig. 1. ARTEMIS architecture

To configure a simulation, users have first to create a
topology by using the topology generator or create it manually.
Then users have to define all the components of this network,
namely the nodes and the links. A node is defined by a name,
a scheduling policy, an automatic generated network address
and a transmission rate.

Once the topology is created, users can create messages
which will define the network behaviour. Users can create a
new message manually by configuring the message path, the
Worst-Case Transmission Time (WCTT), the period and the
offset. The messages creation is more detailed in [2].

Each parameter related to a simulation is saved in a
MySQL database. When users click on "Run", GUI generates
the XML files after getting data from the database. There are
4 XML files to run a simulation:

• "network.xml" that contains the network topology. It
contains a list of nodes with all their attributes (ID and
name), and the other nodes to which they are linked
to.

• "config.xml" contains the whole configuration of the
network, namely the simulation time, the latency and
the mixed-criticality management model.

• "graphconfig.xml" contains the name of the graph and
the parameters related to graph management.

• "messages.xml" contains the messages to be sent. It
lists all the messages and their attributes that we
defined previously.

These files are sent to the kernel, which will perform the
simulation before returning XML files with graph results, GUI
displays these results as a scheduling graph.

B. Web distribution

ARTEMIS is a web-oriented tool. This choice has been
made in order to make it easy to install and to use. Using
web interface makes it independent from any operating system,
which allows us to spread the tool to a large public. The main
purpose of the GUI is to be as intuitive as possible. As a matter
of fact, ARTEMIS is designed for everyone, which includes
non-developers or students who need to be guided, so interface
has been designed to be ergonomic, fluid and clear for users;
web programming allows a fluid and clear utilization of the
tool. Thanks to AJAX architecture, the system answers quickly
to users commands, which make the navigation comfortable,
and the CSS language enables us to make a clean and sleek
visual.

C. Exporting results

In order to improve user experience of the tool, ARTEMIS
now integrates a simulation manager. It adds to ARTEMIS
a bunch of new functions to manage simulations. Each user
can now create its own simulations, export or import them to
different platforms in order to increase the reusability of the
different simulation configurations built.

The export function produces a ZIP archive containing the
input XML files required to build the simulation. Every archive
exported by ARTEMIS can also be imported. Importing a
simulation triggers the creation of a new simulation and the
automatic configuration of it, by using data from the selected
ZIP archive. All informations are saved in the database. Then
the simulation is ready to be run.

These functions are essential for ARTEMIS. It makes
the tool portable and user-oriented by allowing sharing and
communication between users and simulation contexts. These
new functions allows a user to create dedicated topologies of
variable sizes and to propose different messages sets config-
urations in order to operate benchmarking and performances
comparisons on different contexts.

The simulation identification in ARTEMIS is based on
session identification and unique identifier association for each
simulation configuration : each simulation is unique, and be-
longs to a specific user. It allows us to improve the portability
of ARTEMIS architecture, specially in contexts designed for
multi-user utilization, which were the fundamental goal of the
web architecture of ARTEMIS.

III. FLOWSET GENERATOR

In order to be able to simulate concrete network scheduling
scenarios through ARTEMIS, we define a flowset generator
connected to the kernel. Currently, RT simulators propose
tasksets generators based on the UUnifast algorithm [11] to
build the different tasksets needed for scheduling analyses.

In our work, we adapted current taskset generation algo-
rithms to network context. The purpose of ARTEMIS is to
propose scheduling scenarios integrating mixed-criticality in
real-time networks. We adapted the current models to generate
flowsets mixing messages of different criticality levels. That is
the point we propose to detail in the following section.



A. UUnifast for network context

Basically, UUnifast [11] is a taskset generation algorithm.
Its purpose is to generate a set of n periodic or sporadic tasks,
associated to a global load l. Each task of the generated set
is characterized by two properties : a Worst-Case Execution
Time (WCET), and a period (or minimum inter-arrival time,
in the case of a sporadic task). For each task τi, we note Ci

its WCET and Ti its period. We define the maximum duration
Tmax of the period, based on the duration of the simulation.
The generation process is based on 4 different steps :

• First, we generate a random value ri, based on a
uniform law U , with the following expression :

ri = U(log(Tmin), log(Tmax + Tg))

We assume that all the generated values of ri are in
the interval [log(Tmin), log(Tg+Tmax)]. More details
on the computation of ri were given in [11].

• Then, we compute the period Ti of the task τi.
This value of Ti is indexed on ri, according to the
expression :

Ti =

⌊

eri

Tg

⌋

∗ Tg

This bounds the generated period with the value Tmax.
This expression is based on the time granularity of the
system, noted as Tg .

• Next, based on a uniform law U of support 0 and 1,
we generate a random utilization ui for the task. This
utilization represents the individual load of the task. It
is computed by the cumulative activation of jobs from
the task during the time interval [0;Tmax].

• Finally, we compute the WCET Ci of the task, by
computing Ci = ui ∗ Ti.

At the end of the generation of each task, we compare
the value of the targetted load l and the value of cumulative

utilizations u =
n
∑

k=1

(ui). If we have u = l, the taskset is

characterized as correct. In the other case, we discard the
taskset and generate a new one.

The problem represented by this method concerns the
discarding process. As a matter of fact, this discarding process
tends to increase the number of generation loops to run
and, as a result, to increase the generation time needed by
the algorithm. Inside ARTEMIS, we propose to modify this
process in order to reduce the number of discarded tasksets.

Discarding a taskset comes from the point that the cumu-
lated utilization u tends to exceed or lower the value of l. The
computation of each value of ui is based on a uniform law
U(0, 1). As a matter of fact, the generation process tends to
generate flowsets with cumulated utilizations which are out of
bounds, implying to discard the generated flowset.

The solution we propose was to bound the uniform law U

in order for the global generated utilization u to be centered
around the value of l.

As we target a global load value of l for a flowset of size
n, we generate utilizations which have an average load equal

to l
n

. Thus, the law U is characterized by a specific variance v
which can be modified to adjust the results of the generating
algorithm. The higher the value of v, the more heterogeneous
the generated flowset in terms of utilizations, but the more we
tend to increase the number of discarded tasksets. We can vary
the value of v depending on the accuracy and heterogeneity
we target in the generated taskset. For basic simulations, v is
set between 0.05 and 0.06 in ARTEMIS core.

B. Load computation

In multicore and multiprocessor RT scheduling analyzers,
the generation of a taskset is based on a targeted global uti-
lization represented by the taskset. Depending on the network
architecture, a generated taskset utilization can exceed 1 but
the utilization on each node is less than 1 .

In network context, this global utilization has been replaced
by the global load l. One naive approach would be to establish
a strict parallel between the global utilization of a taskset and
the global load l. In fact, as there is not message transmission
or paths computation in processor context, the individual
utilization Ci

Ti
of a task τi represents its direct impact on the

system in terms of utilization. On the opposite, the individual
load Ci

Ti
of a flow vi in a network is not its direct impact :

as each message from the flow will be transmitted once in
each switch of its path, the real impact of one flow in terms
of traffic depends on its path.

C. Mixed-criticality integration

The presented flowset generator generates flows of different
criticality levels. It implies defining two different constraints:
first, we have to clearly define a protocol to decide which
message belongs to which criticality level. Then, for each
message, we have to precise the WCTT of the message for
each criticality level it belongs to. We detail these two steps
below.

In order to decide which message belongs to which crit-
icality level, we first based our work on the assumption
made in [12] for the WCTT of a message sent in different
criticality modes. If we suppose k different criticality levels
γ1, ..., γk−1, γk, we assume for n flows that :

∀i ∈ [1;n], ∀q, r ∈ [1; k], q < r =⇒ C
γq

i ≤ C
γr

i (1)

This hypothesis corresponds to the case where increasing
the criticality level of a flow leads to send more information.
If the maximum criticality level of a flow vi is γq , all the
WCTT of vi will be lower or equal to C

γq

i . Given this
hypothesis on the different criticality levels of a network,
we defined a criticality rate Crate in the network. For each
flow generation, we compute a probability prate included in
[0; 1]. Once computed, for each criticality level γq , we check if
prate < (Crate)

q−1. If that is the case, we generate a dedicated
value for C

γq

i . If not, we set C
γq

i = −1. This hierarchical
structure is convenient to mixed-criticality models as it was
presented in [13].



IV. MIXED-CRITICALITY MODELS

A. Transmission time computation models

Integrating mixed-criticality in ARTEMIS means that the
different virtualized topologies created through the tool must
be able to manage criticality levels and criticality level
switches. This implies to be able to trigger specific events oc-
curing in a criticality level switch. According to previous works
on mixed-criticality in networks [10], we assume that two
different events can trigger a criticality switch in ARTEMIS :

• Either the user statically designed a criticality switch
at a specific time. In that case, the user specifies the
level to switch to and the time at which it occurs. It
is called the static model.

• Either a message exceeds its WCTT at a specific
level according to a configurable law. If we suppose
a flow vi composed of two WCTT CLO

i , CHI
i for

two Low (LO) and High (HI) criticality levels, this
event corresponds to a time where a message from vi
exceeded the WCTT CLO

i . In that case, necessarily,
it implies that vi has to be considered as occuring a
criticality switch to HI

The first model was introduced in ARTEMIS and has
already been discussed in [2] . In order for ARTEMIS core to
be able to manage the second case (low-critical level WCTT
exceeding), it means that the messages generator model has
to be able to generate messages exceeding their low-critical
WCTT. We propose to detail here the modifications we add to
integrate inside ARTEMIS message generator in order to take
into account this new generation model.

Inside ARTEMIS core, we defined several γ1, ..., γk−1, γk
criticality levels (minimum 1). Each flow vi is designed with
a specific WCTT C

γj

i for each criticality level j. In the case
where the flow does not belong to any criticality level except
the lowest one γ1 (non-critical level), we note ∀j > 1, C

γj

i =
−1. As a matter of fact, each flow vi is defined with a set of
WCTT noted as C

γ1

i , ..., C
γk−1

i , C
γk

i .

In order to generate potential criticality switch triggering
events, generating a message from a flow vi implies to gen-
erate not only a specific message transmission time between
the message Best Transmission Time (BTT) and C

γ1

i , but
a message transmission time which is included between the
message BTT and its highest WCTT (attached to the highest
criticality level the flow vi belongs to). In order to integrate
this mixed criticality model, we integrated inside ARTEMIS
different probabilistic models to generate messages of different
transmission times, each transmission time associated to a
specific criticality level.

We have to keep in mind that basically, ARTEMIS has been
designed for worst case analysis. Hence, for each generated
transmission time of a message, we round it to the closest
highest corresponding WCTT w.r.t. a criticality level. This
model allows us to keep a worst-case evaluation of delays in
the end-to-end transmission delay computation of the different
flows in the network.

1) Linear model: The linear model proposes to generate a
transmission time which value is based on a linear probability
law. The generated time is computed from two bounds : the

flow BTT (noted as Bi) and the message highest WCTT, be-
longing to a criticality level γj (notes as C

γj

i ). The probability
of generating a specific transmission time t is estimated as
follows :

P(t) =











0 if t ≤ Bi
Tg

C
γj
i

−Bi

if Bi ≤ t ≤ C
γj

i

0 if t > C
γj

i

2) Strict model: The strict model is based on the assump-
tion that a message transmission time is necessarily equal to
one of its WCTT. As a matter of fact, the strict model consists
in picking one transmission time among all potential values in

C1

i , ..., C
j−1

i , C
j
i . ,

If we suppose that the flow vi belongs to γ1, ..., γj−1, γj
criticality levels, we can express its probability model as :

P(t) =

{

1

j
if t = Cu

i , u ∈ [1; j]

0 if not

3) Gaussian-based models: In this model, we define a
uniform law U which is used as a base to compute each
transmission time of each message. This uniform law is defined
by two parameters : its center c and its deviation d. We note the
expression as U(c, d). In order to define different transmission
time computation models, we can adjust both values of c and
d. Their role is described as follows :

• The lower the value c, the higher the probability for
the transmission time of a message from flow vi to
be equal or close to its BTT. On the contrary, the
higher the value of c, the higher the probability to
have a generated transmission time close to the highest
WCTT of vi.

• The deviation is used to define the probability of a
generated transmission time to be far from c. The
higher the deviation, the more heterogeneous the suc-
cessive generated transmission times.

A complete basic uniform law can generate WCTT which
are beyond the bounds Bi and C

γj

i . To avoid this, we inte-
grate bounds inside the generator, implying to regenerate a
transmission time if the previous one was not between the
bounds. This allows us to propose reliable generation models
which will not generate out of bounds transmission times or
non coherent flowsets.

B. Mixed-criticality switches management

In order to be compliant with Mixed-Criticality (MC) man-
agement models proposed in [10], we integrated protocols to
manage MC inside switched Ethernet networks. Based on our
previous work [10], we integrated first the centralized approach
that relies on a global clock synchronization. The purpose of
this centralized protocol is to guarantee, through a reliable
multicast (implemented in ARTEMIS core), the consistancy
of the criticality level of the network in all the nodes at any
time. We integrated the centralized MC management protocol



in ARTEMIS taking into account the network clock accuracy
provided by a clock synchronization protocol.

The centralized protocol implies to switch the criticality
level to high levels in nodes even if they do not transmit
high-critical flows. This induces a loss of non-critical traffic
transmissions. In order to answer to this problem, we also
integrated an alternative protocol inside ARTEMIS, based on a
distributed and independant MC management protocol among
nodes, called the decentralized protocol. This approach does
not require a global clock synchronizatio protocol.

In ARTEMIS, we integrated the potential to manage these
two modes. The first mode (centralized) was the fundamental
one and has already been discussed in [2]. The decentralized
MC management imposed to split the criticality management
from the global core time management.

We integrated inside ARTEMIS CoreScheduler a new
module responsible for criticality management : the Criticali-
tyManager. This module allows us to manage a criticality level
table (for centralized protocol) and an independant criticality
level value for each node (for decentralized protocol). The
CoreScheduler is, among all, responsible for critical switches
events and criticality table integration. These concepts were
detailed in [2].

The CriticalityManager’s role is to store all the different
criticality switches and WCTT overuns in the network, in
order to associate them with corresponding criticality level
switches, either locally in a node (decentralized approach) or
in the global topology (centralized approach). Its architecture
is detailed in figure

WCTT computation CriticalityManager

Scheduler

Nodes

Links

Messages

XML

Fig. 2. CriticalityManager architecture in ARTEMIS core

At any time, each node controls if the CriticalityManager
triggered a specific criticality switch for this node at a given
time. As a matter of fact, the CriticalityManager is a criticality
switch engine allowing the criticality level of each node to stay
consistant and reliable at any moment of the simulation.

V. SIMULATION RESULTS

In order to illustrate the dynamic detection of mixed
criticality switches, we defined a simple topology composed
of 4 switches and a set of end-systems,. We defined also a
set of flows. In the different simulation environments detailed
below, we defined a topology and a set of flows as described
in figure 3.

The different flows parameters are detailed in the table
below. We ran the simulations for a dual (LO, HI) criticality

ES5

v6,v7
ES4

v5

S3

ES2

v3

ES1

v1,v2

S1

ES3

v4 S2

v1,v2,v3

v1,v2,v3,v4

v5,v6,v7

S4

Fig. 3. Simulation environment (topology and flows)

level network. We ran a first set of simulations to compare the
different linear, strict and gaussian models detailed in III.

vi Ti CLO
i CHI

i

v1 80 5 8
v2 50 4 -
v3 80 4 8
v4 60 3 -
v5 70 4 7
v6 80 5 -
v7 50 3 -

First, we ran a simulation in dynamic centralized mode
(see figure 4). Given this model, we can observe that a WCTT
overun in LO mode was detected for flow v3 is ES2 at
t = 82µs. It means that, at this time, the criticality level
switches from LO to HI. As a matter of fact, the system
detected that the message from ES2 exceeded its LO-WCTT
and sent a criticality switch event to the CriticalityManager.
Figure 4 also shows that the transmission time generator is
able to generate different transmission times (corresponding
to different WCTT) for the same flow.

Fig. 4. Simulation in ARTEMIS with dynamic centralized mode

This first simulation is an implementation and proof of
concept of MC switches management inside ARTEMIS core.
This simulation shows the reliability of the centralized model
and that, when a criticality switches happens, the consistancy
of the criticality level in all nodes is maintained by the
CriticalityManager.

In order to illustrate the decentralized MC management
mode, we ran another simulation with the same parameters, but
with decentralized protocol. We obtained the results showed
in figure 5. We observe in this figure that each node in the
path of v1 detects its LO-WCTT overun. These detections
occurs at different times on the different S1, S2, S4 switches,
respectively at t = 1µs, t = 9µs and t = 17µs, indexed on the
simulation parameters.



Fig. 5. Simulation in ARTEMIS with dynamic decentralized mode

Fig. 6. LO-critical messages transmitted during HI mode

The delay to wait before switching back to LO mode
is automatically set to the longest period of all flows in
the topology. If no message in HI mode is received by a
node during taht period, a node switch back to LO mode.
We observe that the node S1 switches back to LO-mode at
t = 96µs (80µs after the end of transmission of the last HI-
critical message).

As it was predicted, the decentralized network allows nodes
which are not currently transmitting HI traffic to stay in LO
mode. This allows us to transmit a higher amount of LO-
critical traffic. In order to illustrate the number of LO critical
messages which can be transmitted during both centralized
and decentralized approaches, we ran a set of simulations
computing the number of correctly transmitted LO messages
depending on the amount of HI messages in the network.

We generated 40 different random flowsets, for a number
of flowset ranging from 20 to 115. This allows to cover a
various set of possible network traffic modelizations. In order
to illustrate the impact of HI-critical flows, we generated these
simulations for different LO to HI ratios (equal to the number
of LO flows devided by the number of HI flows) ranging from
0.1 to 0.4. The results shown in figure 6 shows that, during HI-
critical phases, we can assure the transmission of LO-critical
messages from 20 % to 70 %, which represents a clear gain
in terms of Quality Of Service (QoS).

As a conclusion, we can observe that the criticality level
switches impacts the network behavior in terms of QoS, but
both presented protocols assure the reliability of HI-critical

messages transmission

VI. CONCLUSION AND PERSPECTIVES

In this paper, we showed the new mixed criticality manage-
ment models integrated inside the last version of ARTEMIS.
Integrating different criticality protocols allows us to integrate
non-critical traffic management in the mixed-criticality simu-
lations. The integration of centralized and distributed mixed
criticality switch models allows us to propose a wide range
of simulation contexts. This integration makes ARTEMIS
specifically designed for reliability and performances tests
and practices in the domain of real-time networks simulation.
ARTEMIS comes with a taskset generation tool supporting
mixed criticality in the context of switched Ethernet Networks.

As a further work, we will propose an on-line downloading
platform for ARTEMIS.

REFERENCES

[1] L. G. X. L. Olivier Cros, Frédéric Fauberteau, “Simulating real-time and
embedded networks scheduling scenarios with artemis,” in WATERS’14,
2014.

[2] L. G. Olivier Cros, “Mixed-criticality management of networked real-
time systems with artemis simulator,” in WATERS’15, 2015.

[3] L. N. L. M. F. Singhoff, J. Legrand, “Cheddar: a flexible real time
scheduling framework,” in The Special Interest Group on Ada (ACM’s

SIGAda) 2004, 2004.

[4] M. C. Mesonero, “Environnement de développement d’applications
multipériodiques sur plateforme multicœur. la boîte à outil schedmcore,”
2012.

[5] M. Chéramy, P.-E. Hladik, and A.-M. Déplanche, “Simso: A simula-
tion tool to evaluate real-time multiprocessor scheduling algorithms,”
in Proc. of the 5th International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems, ser. WATERS,
2014.

[6] D. Mahrenholz and S. Ivanov, “Real-time network emulation with ns-
2,” in Eighth IEEE International Symposium on Distributed Simulation

and Real-Time Applications, 2004. DS-RT 2004., 2004.

[7] A. Varga, OMNeT++ user guide, 2014.

[8] “Automotive can network response time analysis with variable jitter,” in
Mechatronics 2004 : 9th Mechatronics Forum International Conference,
2004, pp. 785–794.

[9] T. M. Rodrigo Coelho, Mark Szczepanski and G. Fohler, “A web based
monitoring tool for afdx networks,” in WATERS’15, 2015.

[10] X. L. Olivier Cros, Laurent George, “A protocol for mixed-criticality
management in switched ethernet networks,” in Workshop on Mixed-

Criticality in Real Time Systems Symposium, WMC-RTSS’16, 2016.

[11] R. I. D. Paul Emberson, Roger Stafford, “Techniques for the synthesis of
multiprocessor tasksets,” in Workshop on Analyzing Tools and method-

ologies for Embedded and Real-Time Systems(WATERS’10), 2010.

[12] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance.” in Real Time Systems

Symposium(RTSS’07), 2007, pp. 239–243.

[13] A. Burns and R. Davis, Mixed criticality systems: A review. Department
of Computer Science, University of York, 2013, vol. Tech. Rep.


