
Abstract: Time4Sys in a nutshell
(Tool presentation)

Loı̈c Fejoz
RealTime-at-Work

Nancy, France
Email: loic.fejoz@realtimeatwork.com

Yassine Ouhammou
LIAS/ISAE-ENSMA

Poitiers, France
Email: yassine.ouhammou@ensma.fr

Abstract—Waruna project is a collaboration between academic
and industrial actors funded through the french government
grant called FUI (Fond Unique Interministriel). The underlying
idea behind this four-years project (2015-2019) is that the
temporal performance verification phase of real-time systems
development life-cycle shall not be a barrier for non-experts of
the domain. Hence, the main objective of Waruna project is to
ease the integration of the temporal performance verification
in engineering practices. Time4Sys is the framework derived
from the Waruna project and whose development is in progress.
As an integrated framework aiming to fill the gap between
system engineering design models and timing models, Time4Sys
is based on two components. The front-end which is dedicated to
modellers in order to design real-time systems using a graphical
language. The back-end shall be a customized part which allows
modellers to analyze iteratively and accurately their designs
with different analysis tools. The customization of the back-end
consists of managing the transformation between designs and
analysis tools and the orchestration of tests that correspond to
the designs under-analysis. In other words, the flexibility of the
back-end part enables to capitalize the experience of temporal
verification analysts as a referential followed by modellers via
the front-end without being obliged to have a deep knowledge
of the temporal verification. Time4Sys is based on model-driven
engineering settings and developed as a Polarsys plugin. Model-
ing, traceability, transformation, analysis, and result reporting
activities are the pillars of the Time4Sys structure and are
explicitly formalized as a set of meta-models.

I. CONTEXT

The development of safety-critical real-time embedded sys-
tems (RETS) requires analyzing functional and non-functional
requirements in order to check if the design meets these
requirements including temporal requirements. For the latter,
a plethora of analysis tests have been developed by the real-
time community leading to a set of academic and industrial
analysis tools (like MAST [1], Cheddar [2] and RTaW-Pegase
[3]). Model-driven engineering (MDE) [4] paradigm gains in
term of popularity and become widely used by practitioners.
Indeed, while the design of RTES is expressed in architectural
design languages (like AADL [5], SysML [6] and UML-
MARTE [7]) and the temporal verification is performed by
analysis tools, MDE allows architects (designers and analysts)
to translate their architectures from a formalism to another and
also integrate analysis phase at an early design stage to avoid
errors that can impact sharply the development life-cycle and
the time-to-market.

II. PROBLEM STATEMENT

Due to the criticality of RTES, the timing verification should
be as accurate as possible. The timing verification is still driven
by analysts experience. Indeed, the current development of
RTES requires several come-and-go flows between designers
and expert analysts. However, many projects can not afford
experts to help for analysis. Even when such help exist, it
is hard to know which toolbox to apply on the problem and
the conditions of application. Even with experts available, the
automation, or at least the guidance, of timing verification is
hard because of the semantic gaps between systems engineer-
ing design artifacts and timing models of such systems. The
Time4Sys framework aims to fill this semantic gap.

III. BACKGROUND

The Waruna project was born from the needs of an SME
(Small and Medium-sized Enterprise) and a big OEM (Origi-
nal Equipment Manufacturer) both building critical embedded
systems with hard real-time constraints. They have quite
different levels of real-time expertise. Still, a common solution
can helps all project’s partners. The objective is two-fold.
First is the integration of the timing verification transformation
closely to the engineering software tool, so that its semantic
can be fully used and translated to verification tools. The
second is to reuse and aggregate all knowledge from previous
projects presented hereafter.

• UML-MARTE is an OMG standard design language [7].
Since it is dedicated to RTES, Time4Sys reuse most of
its relevant architectural and some temporal properties.

• TEMPO [8] is a MARTE viewpoint developed as an
intermediate model in order to reduce and bridge the
semantic gap between MARTE models and the analysis
tools models. Hence, instead of adapting MARTE models
to fit with an analysis tool, TEMPO suggests adding an
intermediate step to explicit the adaptation.

• MoSaRT is a framework [9] based on two pillars: a design
language and analysis repository. Contrary to MARTE,
MoSaRT language is dedicated to express timing analysis
models. The repository enables analysts to share their
experiences by describing the real-time contexts as a set
of axioms and their appropriate tests. The content of
the repository makes the designer autonomous during the
analysis phase since it can be used as a decision-support.



Some of the temporal features and the repository side of
MoSaRT shall be integrated into Time4Sys.

• LTTng [10] is a project that enables the exchange and
analysis of kernel traces. Then it has been extended to
other kinds of traces. Its meta-model is known to be
efficient to handle. Thus Time4Sys has also adapted its
core.

IV. TIME4SYS FOUNDATIONS

By using MDE settings, Time4Sys is being developed as an
Eclipse Polarsys plugin. Time4Sys proposes four capabilities:
the design, the analysis, the traceability and the reporting.

1) Design. Time4Sys provides a graphical domain-specific
language to design RTES. While the concrete syntax is
based on Capella [11], the abstract syntax is a meta-
model based mainly on an extraction of MARTE and
some MoSaRT concepts. This meta-model is expressed
in Ecore [12].

2) Traceability. Because of the previously mentioned se-
mantic gap, timing design models are transformed to
analysis model. We assume that analysis models are
expressed in the same meta-model as design models,
but with more restrictions. Unfortunately, those restric-
tions depend on the targeted analysis and verification
tools. Moreover, because we do not want experts to be
involved too much, verification results must be brought
back to the user interface. So full traceability of those
transformations is mandatory. Here again, Time4Sys
traceability meta-model (called mapping meta-model) is
an aggregation of the trace mechanisms of QVT [13]
and ATL [14].

3) Analysis. Time4Sys contains several connections al-
lowing it to be used with different tools like MAST
and RTaW-Pegase++TM. This latter provides a config-
urable simulation with results deeply integrated into the
Time4Sys framework.

4) Result reporting. The underlying idea is to present
results to users after analysis. Once the results are
validated by users, new models integrating results can be
generated. Currently, we start examining the trace as a
result of simulation tests. So Time4Sys is able to handle
trace. This capability is based on a meta-model inspired
from Trace Compass [15], LTTng and Complex Event
Processing. Indeed it is mandatory to analyze traces from
different viewpoints (e.g., the hardware resources usage,
the task’s activations, etc.). All those views form a kind
of lattice which is a unique feature of this meta-model.

V. PROOF OF CONCEPT

While the tool is not yet available for download1, it is
already submitted to the Polarsys [16] consortium so as to
be shared with an Open Source License (namely the EPL).

1Note for reviewers: it will be available by the time of the conference

VI. CONCLUSION AND FUTURE WORKS

Early experiments are very promising and most foreseen
use-cases can be modeled with Time4Sys design language.
Their analyses are available.

In the future, it is planned to provide an advanced con-
straints meta-model so that systems engineers could express
their requirements. It is also planned to provide connections
to other tools (like Simso [17] and CPAL [18]).

ACKNOWLEDGMENT

The authors would like to thank all the partners of the
project.

This project is supported by the French ministry of the
Economy, Finances, and Industry. This project is co-funded
by the following Regions: Île-de-France, Occitanie, Grand-Est,
and Grand-Nancy. This project is co-funded by the European
Union. Europe is committed in France through the European
Funds for Regional Development and the European Social
Fund.

REFERENCES

[1] MAST, “Modeling and analysis suite for real-time applications,”
http://mast.unican.es/, [Last access 14/04/2017].

[2] “The cheddar project : a gpl real-time scheduling analyzer,”
http://beru.univ-brest.fr/ singhoff/cheddar/, [Last access 14/04/2017].

[3] RTaW-Pegase, “Modeling, simulation, and timing analysis for com-
munication networks,” http://www.realtimeatwork.com/software/rtaw-
pegase/, [Last access 14/04/2017].

[4] K. Balasubramanian, A. S. Krishna, E. Turkay, J. Balasubramanian,
J. Parsons, A. S. Gokhale, and D. C. Schmidt, “Applying model-driven
development to distributed real-time and embedded avionics systems,”
IJES, vol. 2, no. 3/4, pp. 142–155, 2006.

[5] AADL, “Architecture analysis and design language,”
http://www.aadl.info/aadl/currentsite/.

[6] SysML, “Systems modeling language,”
http://www.omg.org/spec/SysML, [Last access 14/04/2017].

[7] MARTE, “Modeling and analysis of real-time and embedded systems,”
http://www.omg.org/omgmarte/, [Last access 14/04/2017].

[8] R. Henia, L. Rioux, and N. Sordon, “Demo abstract: TEMPO: inte-
grating scheduling analysis in the industrial design practices,” in IEEE
RTAS, 2016, p. 63.

[9] Y. Ouhammou, E. Grolleau, M. Richard, P. Richard, and F. Madiot,
“Mosart framework: A collaborative tool for modeling and analyzing
embedded real-time systems,” in CSDM, 2014, pp. 283–295.

[10] LTTng, “an open source tracing framework for linux,” http://lttng.org/,
[Last access 17/04/2017].

[11] “Capella,” https://polarsys.org/capella/, [Last access 14/04/2017].
[12] “Eclipse modeling framework,” https://www.eclipse.org/modeling/emf/,

[Last access 14/04/2017].
[13] “Query/view/transformation QVT,” http://www.omg.org/spec/QVT/,

[Last access 14/04/2017].
[14] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite

Events at the MoDELS 2005 Conference, 2005, pp. 128–138.
[15] “Eclipse trace compass,” [Last access 14/04/2017]. [Online]. Available:

http://tracecompass.org
[16] “Time4sys,” [Last access 14/04/2017]. [Online]. Available:

https://www.polarsys.org/projects/polarsys.time4sys
[17] Simso, “Simulation of multiprocessor scheduling with overheads,”

http://projects.laas.fr/simso/, [Last access 14/04/2017].
[18] L. Fejoz, N. Navet, S. M. Sundharam, and S. Altmeyer, “Demo abstract:

Applications of the CPAL language to model, simulate and program
cyber-physical systems,” in IEEE RTAS, 2016, p. 64.


