
Compilation for Real-Time Systems - An Overview
of the WCET-Aware C Compiler WCC

Dominic Oehlert
Institute of Embedded Systems

Hamburg University of Technology
Germany

dominic.oehlert@tuhh.de

Arno Luppold
Institute of Embedded Systems

Hamburg University of Technology
Germany

arno.luppold@tuhh.de

Heiko Falk
Institute of Embedded Systems

Hamburg University of Technology
Germany

heiko.falk@tuhh.de

Abstract—Traditionally, design of embedded hard real-time
software and timing analysis are decoupled from each other,
leading to complicated design flows involving human interaction.
Furthermore, traditional compilers optimize for average-case
performance so that no tool support exists supporting the
designer to systematically reduce Worst-Case Execution Times
in case that deadlines are missed. The WCET-aware C Compiler
WCC improves this situation by tightly schedulability analyses)
into the compilation and optimization flow. Furthermore, the
compiler features dedicated real-time aware optimizations and
exploits detailed architectural knowledge so that schedulable
code meeting deadlines can be generated automatically, even for
multitask or multicore systems.

I. INTRODUCTION

Developing for hard real-time systems can be a tedious task.
Programs running on hard real-time systems always have to
meet their temporal deadlines, otherwise the system is not real-
time capable. While the worst-case execution time (WCET)
of a program strongly depends on several, mostly low-level,
characteristics of the architecture and the program’s machine
code, the source code is typically written in an abstract high-
level programming language. In case it turns out a program
does not meet its deadline, the programmer has to return to
the source code and try to optimize program parts manually
which may be part of the worst-case execution path (WCEP).
WCET analyzers, such as AbsInt’s aiT [1] or OTAWA [2],
help the user to find out which particular parts of the program
actually lie on the WCEP. Yet, this is an additional manual
process and requires to generate architecture- and program-
specific configuration files. This manual optimization cycle of
compiling, analyzing and modifying can be lengthy and is
easily error-prone.

On the other hand, the programmer can choose from a
plethora of optimizations in modern mainstream compilers.
Anyhow, these optimizations typically exploit heuristics and
aim at reducing the average-case execution time (ACET) of
a program. As a consequence, these ACET optimizations are
not guaranteed to improve the timing or may even deteriorate
the WCET of a program.

To tackle these issues and to introduce a unified design
flow for hard real-time systems, the WCET-aware C compiler
(WCC) [3] consists of sophisticated WCET-oriented analyses
and optimizations. It offers automated WCET or schedulability

C Code

Parser ICD-C

Loop
Analyzer

Code-
Selector

ICD-LLIR

aiT &
CoMET

Internal
WCET

Analyzer &
Bus Analysis

Schedulability
Analysis

Code-
Generator

obj
Files

Linker
Script

WCET- &
Schedulability-

Aware
Optimizations

Fig. 1. Overall WCC Workflow

analyses and optimizations for several architectures, such that
the user does not need to manually interact with the different
tools. In the following, we will give a brief overview of the
general structure, analyses and optimizations of the WCC.
The paper is organized as follows: Section II gives a general
overview of the structure of the WCC. Section III presents
featured analyses as well as an exemplary set of WCET-
oriented optimizations. Section IV presents novel features
currently being implemented and concludes this paper.

II. STRUCTURE

The overall structure and workflow of the WCC can be
seen in Fig. 1. Solid lines depict the workflow of a typi-
cal compiler, whereas the dashed lines show WCC specific
parts. The WCC is a C compiler currently targeting the
Infineon TriCore TC1796 and TC1797 processors as well as
the ARM7TDMI processor. The platform-independent C-like
high-level intermediate representation (ICD-C) is transformed
to the assembler-like low-level intermediate representation



(ICD-LLIR) via the code-selector. Furthermore, it is possi-
ble to annotate information from the low-level intermediate
representation back to the corresponding high-level constructs
through a back-annotation. This enables the user to perform
typical high-level optimizations (such as, e.g., loop unrolling)
with detailed low-level knowledge of the generated code (e.g.,
timings or code size). In order to describe the actual memory
layout of the chosen processor, the WCC features an adaptable
memory hierarchy specification. Architecture-dependent char-
acteristics such as memory regions, their worst-case latencies,
caches and bus bandwidths are described within.

The WCC also supports user-provided information concern-
ing the control flow of a program. These so-called flow facts
can be directly annotated into the source code of the program
and describe, e.g., the maximum (resp. minimum) number of
loop iterations or the maximum recursion depth. Besides, loop
bounds may also be derived automatically using an integrated
loop analyzer.

III. FEATURES

The WCC contains plenty of useful features in order to
compile, optimize and analyze a single task or a set of tasks
for an embedded hard real-time system.

A. Analyses

As embodied by the name, the WCC is dedicated to perform
a WCET-aware compilation and optimization. In order to do
so, it includes several analyses. The WCC is tightly coupled
with AbsInt’s WCET analyzer aiT, which enables the user
to analyze the WCET of a single task automatically while
compiling. The analysis is fully automated, such that the
user can call the WCC with a corresponding flag such that
a program is compiled and a WCET analysis is carried
out afterwards. Required configuration files (containing, e.g,
architecture-dependent latencies or program-dependent infor-
mation like loop bounds) are generated and the required timing
analysis tools are called completely transparent to the user.
The resulting values, such as the global WCET, worst-case
execution counts, cache hits and misses, etc., are annotated
back to the compiler’s intermediate representations. Based on
this information further WCET-oriented optimizations can be
performed.

Recently, a holistic schedulability analysis framework was
incorporated into the WCC [4]. It is based on the event model
by Gresser [5], allowing for the analysis of systems featuring
arbitrary activation patterns and deadlines. The framework
supports both preemptive fixed priority scheduling algorithms
like Deadline Monotonic Scheduling as well as dynamic pri-
ority scheduling like Earliest Deadline First. WCC’s low-level
analysis techniques allows to automatically include detailed
information on timing overheads into the analysis framework.
This does not only comprise penalties due to the system’s real-
time scheduler, but also context switching costs and cache-
related preemption delays.

Additionally, the WCC has an own internal WCET an-
alyzer featuring a precise timing estimation for complex

ARM7TDMI-based multicore systems [6]. This analyzer is
capable of analyzing a system with up 8 parallel homogeneous
cores connected via configurable bus. Supported bus arbitra-
tion policies include Time Division Multiple Access (TDMA),
Round Robin, Fixed Priority and Priority Division [7]. Beside
shared and private memories, the analyzer is also able to ana-
lyze hierarchal cache structures, both shared and private. The
analyzer comprises multicore-specific configuration settings
(such as, e.g., a may-happen-in-parallel analysis on a basic
block level) to offer an adjustable trade-off between tightness
and speed.

Bridging the gap between system-level analysis and low-
level code analysis, the WCC is capable to extract event arrival
functions [8] from a given program [9]. Event arrival functions
allow to model the dynamics of a real-time system, even
for arbitrarily triggered events. They are used in system-level
analysis to limit the number of events and analyze the extent of
induced interference. Such an abstract event can be defined as,
e.g., the access to a specific memory region. The WCC then
extracts a corresponding safe upper (or lower) event arrival
function with an adjustable level of granularity, offering a
flexible choice between tightness of the resulting curve and
required runtime for the extraction. The resulting curves can
be saved either in a CSV file or be directly used for further
optimizations.

For ACET-oriented optimizations or in order to acquire
reference timings, the WCC also has a tight coupling with
the cycle-accurate instruction set simulator CoMET [10] from
Synopsys. The actual generation of configuration files and
calling of the corresponding tool happens completely trans-
parent to the user as well. Similar to the integration of WCET
analyzers in the WCC, also the profiling results are annotated
back to the internal structures.

B. Optimizations

The aforementioned analyses are used to perform sophisti-
cated WCET-oriented optimizations. In the following, we will
give a brief overview on WCET-oriented static memory allo-
cation optimizations integrated into the WCC as an exemplary
set of optimizations.

The static allocation of certain program parts to a faster, yet
typically smaller memory, can be exploited to reduce a pro-
gram’s WCET. The faster but smaller memories are commonly
known as scratchpad memories (SPM). Determining by hand
which parts of the program should go into the faster memory
and which should reside in the larger, yet slower, memory
in order to achieve a lower WCET is tedious and will most
likely not provide an optimal result. To counter this issue, the
WCC offers several dedicated optimizations to find optimal
static WCET-aware allocations. The optimizations differ in the
type of allocation (instruction or data) and in their coverage
of architecture-specific characteristics.

WCET-aware static instruction allocation optimizations are
typically carried out on a basic block granularity by the WCC.
This enables a good trade-off between optimization runtime
and optimization quality. The optimization is not limited to a



non-cached singletask-singlecore system [11], but can also be
applied to systems including instruction caches [12], multitask-
singlecore systems [4] or singletask-multicore systems [13].
These specific optimizations take the architecture-dependent
characteristics into account. Overall, these optimizations au-
tomatically decide which program parts should remain in the
larger, yet slower, memory region and which parts should be
allocated to the faster SPM in order to receive a minimum
WCET or to make a system schedulable in case of a multitask
system. As these optimizations are based on integer linear
programming (ILP), the resulting allocation will be optimal
with regard to the underlying model. The actual allocation to
the corresponding memory regions and the potentially required
control flow repair is done automatically by the compiler.

If the user chooses to run a cache-aware static instruction
allocation optimization, the optimization will also predict
additional new cache hits or misses due to the updated memory
layout of the program. Architecture-dependent parameters like
the cache size are automatically adapted from WCC’s target
memory layout.

For multicore architectures, the WCC offers a dedicated
static instruction allocation optimization as well. It assumes
a private SPM per core and a shared Flash memory, whereas
the architecture is connected using a TDMA-scheduled bus.
The optimization then predicts the additional timing penalties
or gains due to the TDMA schedule by estimating the timing
offsets for each shared memory access.

When compiling for a multitask system, the WCC offers
another dedicated static instruction allocation. This optimiza-
tion derives the required scheduling information given by the
user and tries to find an allocation for all tasks (sharing
the same memories), such that a previously non-schedulable
system becomes schedulable. This optimization also includes
a schedulability test, meaning if the optimization succeeds, the
resulting system is guaranteed to be schedulable and therefore
meets all its deadlines.

Additionally, the WCC also offers a static instruction al-
location optimization based on evolutionary algorithms. This
optimization invokes a WCET analysis for each individual. As
the WCET analysis considers all characteristics from the given
system, the optimization itself also inherently considering
all system properties. Although not guaranteeing to find an
optimal allocation, it will likely find a solution close to the
global optimum due to the nature of evolutionary algorithms.

Similarly, the WCC comprises an ILP-based WCET-
oriented memory region allocation for data objects. In analogy,
the compiler finds an optimal allocation for the existing
data objects in a program, such that a minimal WCET is
achieved. The optimization decides which data objects are
allocated to which memory region. According to this decision,
a corresponding linker file is generated as depicted in Fig. 1.
The WCC then automatically assembles and links the program,
resulting in a final binary with an optimized WCET.

IV. OUTLOOK

A part of future work is the integration of new architectures
into the WCET-aware C Compiler. Beside supporting TriCore
TC1796, TC1797 and ARM7TDMI architectures, the WCC is
currently being expanded in order to support the ARM Cortex
M and the LEON3 processors. Analogous to the existing ar-
chitectures, the platform-dependent parameters of the LEON3
architecture will be integrated as well as the coupling with the
corresponding timing analysis tools, enabling real-time aware
optimizations.

Besides, we are currently integrating a coupling with the
real-time calculus toolbox [14] in order to further utilize the
possibility to extract tight and safe event arrival functions
using the WCC. This will allow WCET-oriented system-level
optimizations in combination with low-level optimizations,
leveraging both levels of abstraction. Additionally, even com-
plex distributed architectures may be analyzed using modular
performance analysis via real-time calculus.

REFERENCES

[1] AbsInt Angewandte Informatik, GmbH. (2018) aiT Worst-Case Execu-
tion Time Analyzers.

[2] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: An
Open Toolbox for Adaptive WCET Analysis,” in Proceedings of Interna-
tional Workshop on Software Technologies for Embedded and Ubiquitous
Systems (2010), 2010.

[3] H. Falk and P. Lokuciejewski, “ A compiler framework for the reduction
of worst-case execution times ,” Real-Time Systems, vol. 46, no. 2, 2010.

[4] A. Luppold and H. Falk, “Schedulability-aware SPM Allocation for
preemptive hard real-time systems with arbitrary activation patterns,”
in Proceedings of Design, Automation Test in Europe Conference Exhi-
bition (2017), 2017.

[5] K. Gresser, “An Event Model for Deadline Verification of Hard Real-
Time Systems,” in Proceedings of Euromicro Conference on Real-Time
Systems (1993), 1993.

[6] T. Kelter and P. Marwedel, “Parallelism analysis: Precise wcet values
for complex multi-core systems,” Science of Computer Programming,
vol. 133, 2017, Formal Techniques for Safety-Critical Systems.

[7] H. Shah, A. Raabe, and A. Knoll, “Priority division: A high-speed
shared-memory bus arbitration with bounded latency,” in Proceedings
of Design, Automation Test in Europe (2011), March 2011.

[8] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proceedings of the 2000 IEEE In-
ternational Symposium on Circuits and Systems. Emerging Technologies
for the 21st Century., 2000.

[9] D. Oehlert, S. Saidi, and H. Falk, “Compiler-based Extraction of Event
Arrival Functions for Real-Time Systems Analysis,” in Proceedings of
Euromicro Conference on Real-Time Systems (2018), 2018.

[10] Synopsys, Inc. (2018) Synopsys CoMET-METeor.
[11] H. Falk and J. C. Kleinsorge, “Optimal Static WCET-aware Scratch-

pad Allocation of Program Code,” in Proceedings of Annual Design
Automation Conference (2009), 2009.

[12] A. Luppold, C. Kittsteiner, and H. Falk, “Cache-Aware Instruction SPM
Allocation for Hard Real-Time Systems,” in Proceedings of Interna-
tional Workshop on Software and Compilers for Embedded Systems
(2016), 2016.

[13] D. Oehlert, A. Luppold, and H. Falk, “Bus-Aware Static Instruction SPM
Allocation for Multicore Hard Real-Time Systems,” in Proceedings of
Euromicro Conference on Real-Time Systems (2017), 2017.

[14] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
2006. [Online]. Available: http://www.mpa.ethz.ch/Rtctoolbox


